Now showing 1 - 3 of 3
  • 2018Journal Article
    [["dc.bibliographiccitation.artnumber","1514"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Feist, Maren"],["dc.contributor.author","Schwarzfischer, Philipp"],["dc.contributor.author","Heinrich, Paul"],["dc.contributor.author","Sun, Xueni"],["dc.contributor.author","Kemper, Judith"],["dc.contributor.author","von Bonin, Frederike"],["dc.contributor.author","Perez-Rubio, Paula"],["dc.contributor.author","Taruttis, Franziska"],["dc.contributor.author","Rehberg, Thorsten"],["dc.contributor.author","Dettmer, Katja"],["dc.contributor.author","Gronwald, Wolfram"],["dc.contributor.author","Reinders, Jörg"],["dc.contributor.author","Engelmann, Julia C."],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Klapper, Wolfram"],["dc.contributor.author","Trümper, Lorenz"],["dc.contributor.author","Spang, Rainer"],["dc.contributor.author","Oefner, Peter J."],["dc.contributor.author","Kube, Dieter"],["dc.date.accessioned","2019-07-09T11:45:23Z"],["dc.date.available","2019-07-09T11:45:23Z"],["dc.date.issued","2018"],["dc.description.abstract","Knowledge of stromal factors that have a role in the transcriptional regulation of metabolic pathways aside from c-Myc is fundamental to improvements in lymphoma therapy. Using a MYC-inducible human B-cell line, we observed the cooperative activation of STAT3 and NF-κB by IL10 and CpG stimulation. We show that IL10 + CpG-mediated cell proliferation of MYClow cells depends on glutaminolysis. By 13C- and 15N-tracing of glutamine metabolism and metabolite rescue experiments, we demonstrate that GOT2 provides aspartate and nucleotides to cells with activated or aberrant Jak/STAT and NF-κB signaling. A model of GOT2 transcriptional regulation is proposed, in which the cooperative phosphorylation of STAT3 and direct joint binding of STAT3 and p65/NF-κB to the proximal GOT2 promoter are important. Furthermore, high aberrant GOT2 expression is prognostic in diffuse large B-cell lymphoma underscoring the current findings and importance of stromal factors in lymphoma biology."],["dc.identifier.doi","10.1038/s41467-018-03803-x"],["dc.identifier.pmid","29666362"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15191"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59220"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2041-1723"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","610"],["dc.title","Cooperative STAT/NF-κB signaling regulates lymphoma metabolic reprogramming and aberrant GOT2 expression."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","34201"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","34216"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Ehrentraut, Stefan"],["dc.contributor.author","Schneider, Bjoern"],["dc.contributor.author","Nagel, Stefan"],["dc.contributor.author","Pommerenke, Claudia"],["dc.contributor.author","Quentmeier, Hilmar"],["dc.contributor.author","Geffers, Robert"],["dc.contributor.author","Feist, Maren"],["dc.contributor.author","Kaufmann, Maren"],["dc.contributor.author","Meyer, Corinna"],["dc.contributor.author","Kadin, Marshall E."],["dc.contributor.author","Drexler, Hans G."],["dc.contributor.author","MacLeod, Roderick A. F."],["dc.date.accessioned","2018-11-07T10:12:52Z"],["dc.date.available","2018-11-07T10:12:52Z"],["dc.date.issued","2016"],["dc.description.abstract","We propose that deregulated T-helper-cell (Th) signaling underlies evolving Th17 cytokine expression seen during progression of cutaneous T-cell lymphoma (CTCL). Accordingly, we developed a lymphoma progression model comprising cell lines established at indolent (MAC-1) and aggressive (MAC-2A) CTCL stages. We discovered activating JAK3 (V722I) mutations present at indolent disease, reinforced in aggressive disease by novel compound heterozygous SOCS1 (G78R/D105N) JAK-binding domain inactivating mutations. Though isogenic, indolent and aggressive-stage cell lines had diverged phenotypically, the latter expressing multiple Th17 related cytokines, the former a narrower profile. Importantly, indolent stage cells remained poised for Th17 cytokine expression, readily inducible by treatment with IL-2-a cytokine which mitigates Th17 differentiation in mice. In indolent stage cells JAK3 expression was boosted by IL-2 treatment. Th17 conversion of MAC-1 cells by IL-2 was blocked by pharmacological inhibition of JAK3 or STAT5, implicating IL2RG - JAK3 - STAT5 signaling in plasticity responses. Like IL-2 treatment, SOCS1 knockdown drove indolent stage cells to mimic key aggressive stage properties, notably IL17F upregulation. Co-immunoprecipitation experiments showed that SOCS1 mutations abolished JAK3 binding, revealing a key role for SOCS1 in regulating JAK3/STAT5 signaling. Collectively, our results show how JAK/STAT pathway mutations contribute to disease progression in CTCL cells by potentiating inflammatory cytokine signaling, widening the potential therapeutic target range for this intractable entity. MAC-1/2A cells also provide a candidate human Th17 laboratory model for identifying potentally actionable CTCL markers or targets and testing their druggability in vitro."],["dc.identifier.doi","10.18632/oncotarget.9077"],["dc.identifier.isi","000377752100052"],["dc.identifier.pmid","27144517"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14132"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40321"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Impact Journals Llc"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T-cell lymphoma"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","47061"],["dc.bibliographiccitation.issue","30"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","47081"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Schrader, Alexandra"],["dc.contributor.author","Meyer, Katharina"],["dc.contributor.author","Walther, Neele"],["dc.contributor.author","Stolz, Ailine"],["dc.contributor.author","Feist, Maren"],["dc.contributor.author","Hand, Elisabeth"],["dc.contributor.author","von Bonin, Frederike"],["dc.contributor.author","Evers, Maurits"],["dc.contributor.author","Kohler, Christian W."],["dc.contributor.author","Shirneshan, Katayoon"],["dc.contributor.author","Vockerodt, Martina"],["dc.contributor.author","Klapper, Wolfram"],["dc.contributor.author","Szczepanowski, Monika"],["dc.contributor.author","Murray, Paul G."],["dc.contributor.author","Bastians, Holger"],["dc.contributor.author","Truemper, Lorenz H."],["dc.contributor.author","Spang, Rainer"],["dc.contributor.author","Kube, Dieter"],["dc.date.accessioned","2018-11-07T10:11:28Z"],["dc.date.available","2018-11-07T10:11:28Z"],["dc.date.issued","2016"],["dc.description.abstract","To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through aIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR. 1, includes numerous cell cycle regulators. A reduced expression of BCR. 1 genes after BCR activation was observed in different cell lines and also in CD10(+) germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term aIgM treatment. Furthermore, an inverse correlation of BCR. 1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR. 1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery."],["dc.identifier.doi","10.18632/oncotarget.9219"],["dc.identifier.isi","000385413000020"],["dc.identifier.pmid","27166259"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14137"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40052"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Impact Journals Llc"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS