Now showing 1 - 10 of 32
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","2187"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Intensive Care Medicine"],["dc.bibliographiccitation.lastpage","2196"],["dc.bibliographiccitation.volume","46"],["dc.contributor.author","Chiumello, Davide"],["dc.contributor.author","Busana, Mattia"],["dc.contributor.author","Coppola, Silvia"],["dc.contributor.author","Romitti, Federica"],["dc.contributor.author","Formenti, Paolo"],["dc.contributor.author","Bonifazi, Matteo"],["dc.contributor.author","Pozzi, Tommaso"],["dc.contributor.author","Palumbo, Maria Michela"],["dc.contributor.author","Cressoni, Massimo"],["dc.contributor.author","Herrmann, Peter"],["dc.contributor.author","Meissner, Konrad"],["dc.contributor.author","Quintel, Michael"],["dc.contributor.author","Camporota, Luigi"],["dc.contributor.author","Marini, John J."],["dc.contributor.author","Gattinoni, Luciano"],["dc.date.accessioned","2021-04-14T08:32:14Z"],["dc.date.available","2021-04-14T08:32:14Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1007/s00134-020-06281-2"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83854"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1432-1238"],["dc.relation.issn","0342-4642"],["dc.title","Physiological and quantitative CT-scan characterization of COVID-19 and typical ARDS: a matched cohort study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","589"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","COPD: Journal of Chronic Obstructive Pulmonary Disease"],["dc.bibliographiccitation.lastpage","594"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Haarmann, Helge"],["dc.contributor.author","Folle, Jan"],["dc.contributor.author","Xuan Phuc Nguyen, Xuan Phuc Nguyen"],["dc.contributor.author","Herrmann, Peter"],["dc.contributor.author","Heusser, Karsten"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.contributor.author","Andreas, Stefan"],["dc.contributor.author","Raupach, Tobias"],["dc.date.accessioned","2017-09-07T11:54:43Z"],["dc.date.available","2017-09-07T11:54:43Z"],["dc.date.issued","2016"],["dc.description.abstract","Exercise intolerance, skeletal muscle dysfunction, and reduced daily activity are central in COPD patients and closely related to quality of life and prognosis. Studies assessing muscle exercise have revealed an increase in sympathetic outflow as a link to muscle hypoperfusion and exercise limitation. Our primary hypothesis was that muscle sympathetic nerve activity (MSNA) correlates with exercise limitation in COPD. MSNA was evaluated at rest and during dynamic or static handgrip exercise. Additionally, we assessed heart rate, blood pressure, CO2 tension, oxygen saturation (SpO(2)), and breathing frequency. Ergospirometry was performed to evaluate exercise capacity. We assessed MSNA of 14 COPD patients and 8 controls. In patients, MSNA was negatively correlated with peak oxygen uptake (VO2 % pred) (r = -0.597; p = 0.040). During dynamic or static handgrip exercise, patients exhibited a significant increase in MSNA, which was not observed in the control group. The increase in MSNA during dynamic handgrip was highly negatively correlated with peak exercise capacity in Watts (w) and peak oxygen uptake (VO2/kg) (r = -0.853; p = 0.002 and r = -0.881; p = 0.002, respectively). Our study reveals an association between increased MSNA and limited exercise capacity in patients with COPD. Furthermore, we found an increased sympathetic response to moderate physical exercise (handgrip), which may contribute to exercise intolerance in COPD."],["dc.identifier.doi","10.3109/15412555.2015.1136272"],["dc.identifier.gro","3141749"],["dc.identifier.isi","000381997300009"],["dc.identifier.pmid","26829234"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/646"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Taylor & Francis Inc"],["dc.relation.eissn","1541-2563"],["dc.relation.issn","1541-2555"],["dc.title","Sympathetic Activation is Associated with Exercise Limitation in COPD"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","15"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Respiratory Care"],["dc.bibliographiccitation.lastpage","22"],["dc.bibliographiccitation.volume","61"],["dc.contributor.author","Moerer, Onnen"],["dc.contributor.author","Harnisch, Lars-Olav"],["dc.contributor.author","Herrmann, Peter"],["dc.contributor.author","Zippel, Carsten"],["dc.contributor.author","Quintel, Michael"],["dc.date.accessioned","2018-11-07T10:21:44Z"],["dc.date.available","2018-11-07T10:21:44Z"],["dc.date.issued","2016"],["dc.description.abstract","BACKGROUND: During noninvasive ventilation (NIV) of COPD patients, delayed off-cycling of pressure support can cause patient ventilator mismatch and NIV failure. This systematic experimental study analyzes the effects of varying cycling criteria on patient-ventilator interaction. METHODS: A lung simulator with COPD settings was connected to an ICU ventilator via helmet or face mask. Cycling was varied between 10 and 70% of peak inspiratory flow at different breathing frequencies (15 and 30 breaths/min) and pressure support levels (5 and 15 cm H2O) using the ventilator's invasive and NIV mode with and without an applied leakage. RESULTS: Low cycling criteria led to severe expiratory cycle latency. Augmenting off-cycling reduced expiratory cycle latency (P < .001), decreased intrinsic PEEP, and avoided non-supported breaths. Setting cycling to 50% of peak inspiratory flow achieved best synchronization. Overall, using the helmet interface increased expiratory cycle latency in almost all settings (P < .001). Augmenting cycling from 10 to 40% progressively decreased expiratory pressure load (P < .001). NIV mode decreased expiratory cycle latency compared with the invasive mode (P < .001). CONCLUSION: Augmenting the cycling criterion above the default setting (20-30% peak inspiratory flow) improved patient ventilator synchrony in a simulated COPD model. This suggests that an individual approach to cycling should be considered, since interface, level of pressure support, breathing frequency, and leakage influence patient-ventilator interaction and thus need to be considered."],["dc.identifier.doi","10.4187/respcare.04141"],["dc.identifier.isi","000367062300005"],["dc.identifier.pmid","26556898"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42144"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Daedalus Enterprises Inc"],["dc.relation.issn","1943-3654"],["dc.relation.issn","0020-1324"],["dc.title","Patient-Ventilator Interaction During Noninvasive Ventilation in Simulated COPD"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Conference Abstract
    [["dc.bibliographiccitation.firstpage","S42"],["dc.bibliographiccitation.journal","Intensive Care Medicine"],["dc.bibliographiccitation.lastpage","S43"],["dc.bibliographiccitation.volume","38"],["dc.contributor.author","Ball, Lorenzo"],["dc.contributor.author","Corradi, Francesco"],["dc.contributor.author","Brusasco, C."],["dc.contributor.author","Garlaschi, Alessandro"],["dc.contributor.author","Bazurro, S."],["dc.contributor.author","De Ferrari, A."],["dc.contributor.author","Millone, M."],["dc.contributor.author","Herrmann, Peter"],["dc.contributor.author","Pelosi, Paolo"],["dc.date.accessioned","2018-11-07T09:05:34Z"],["dc.date.available","2018-11-07T09:05:34Z"],["dc.date.issued","2012"],["dc.identifier.isi","000209083000136"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25355"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.relation.issn","1432-1238"],["dc.relation.issn","0342-4642"],["dc.title","LUNG PATHOLOGY EXTENSION DOES NOT SIGNIFICANTLY INFLUENCE ACCURACY OF QUANTITATIVE COMPUTED TOMOGRAPHY ON TEN SECTION EXTRAPOLATION"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2012Conference Abstract
    [["dc.bibliographiccitation.journal","Mycoses"],["dc.bibliographiccitation.volume","55"],["dc.contributor.author","Herrmann, S."],["dc.contributor.author","Iben, I."],["dc.contributor.author","Gross, U."],["dc.contributor.author","Reichard, Utz"],["dc.date.accessioned","2018-11-07T09:09:42Z"],["dc.date.available","2018-11-07T09:09:42Z"],["dc.date.issued","2012"],["dc.format.extent","59"],["dc.identifier.isi","000305069800189"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/26322"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.issn","0933-7407"],["dc.title","Reduced virulence of Aspergillus fumigatus mutants after knock-out of conidial surface proteins"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","japplphysiol.00426.2022"],["dc.bibliographiccitation.journal","Journal of Applied Physiology"],["dc.contributor.author","Busana, Mattia"],["dc.contributor.author","Zinnato, Carmelo"],["dc.contributor.author","Romitti, Federica"],["dc.contributor.author","Palumbo, Michela"],["dc.contributor.author","Gattarello, Simone"],["dc.contributor.author","Sonzogni, Aurelio"],["dc.contributor.author","Gersmann, Ann-Kathrin"],["dc.contributor.author","Richter, Annika"],["dc.contributor.author","Herrmann, Peter"],["dc.contributor.author","Hahn, Günter"],["dc.contributor.author","Gattinoni, Luciano"],["dc.date.accessioned","2022-10-04T10:21:51Z"],["dc.date.available","2022-10-04T10:21:51Z"],["dc.date.issued","2022"],["dc.description.abstract","The amount of energy delivered to the respiratory system is recognized as a cause of Ventilator Induced Lung Injury (VILI). How energy dissipation within the lung causes damage is still a matter of debate. Expiratory flow control has been proposed as a strategy to reduce the energy dissipated into the respiratory system during expiration and, possibly, VILI. We studied 22 healthy pigs (29±2 kg), which were randomized into a control (n=11) and a valve group (n=11), where the expiratory flow was controlled through a variable resistor. Both groups were ventilated with the same tidal volume, PEEP and inspiratory flow. Electric impedance tomography was continuously acquired. At completion, lung weight, wet to dry ratios and histology were evaluated. The total mechanical power was similar in the control and valve groups (8.54±0.83 J min\n -1\n and 8.42±0.54 J min\n -\n 1\n respectively, p=0.552). The total energy dissipated within the whole system (circuit + respiratory system) was remarkably different (4.34±0.66 vs 2.62±0.31 J/min, p<0.001). However, most of this energy was dissipated across the endotracheal tube (2.87±0.3 vs 1.88±0.2 J/min, p<0.001). The amount dissipated into the respiratory system averaged 1.45±0.5 in controls vs 0.73±0.16 J min\n -1\n in the valve group, p<0.001. Although respiratory mechanics, gas exchange, hemodynamics, wet to dry ratios and histology were similar in the two groups, the decrease of end-expiratory lung impedance was significantly greater in the control group (p=0.02). We conclude that with our experimental conditions, the reduction of energy dissipated in the respiratory system did not lead to appreciable differences in VILI."],["dc.identifier.doi","10.1152/japplphysiol.00426.2022"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114520"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.eissn","1522-1601"],["dc.relation.issn","8750-7587"],["dc.title","Energy dissipation during expiration and Ventilator Induced Lung Injury: an experimental animal study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","964"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Pediatric Pulmonology"],["dc.bibliographiccitation.lastpage","975"],["dc.bibliographiccitation.volume","46"],["dc.contributor.author","Tsagogiorgas, Charalambos"],["dc.contributor.author","Alb, Markus"],["dc.contributor.author","Herrmann, Peter"],["dc.contributor.author","Quintel, Michael"],["dc.contributor.author","Meinhardt, Juergen P."],["dc.date.accessioned","2018-11-07T08:51:18Z"],["dc.date.available","2018-11-07T08:51:18Z"],["dc.date.issued","2011"],["dc.description.abstract","Introduction: Total liquid ventilation (TLV) with perfluorocarbons has shown to improve cardiopulmonary function in the injured and immature lung; however there remains controversy over the normal lung. Hemodynamic effects of TLV in the normal lung currently remain undetermined. This study compared changes in cardiopulmonary and circulatory function caused by either liquid or gas tidal volume ventilation. Methods: In a prospective, controlled study, 12 non-injured anesthetized, adult New Zealand rabbits were primarily conventionally gas-ventilated (CGV). After instrumentation for continuous recording of arterial (AP), central venous (CVP), left artrial (LAP), pulmonary arterial pressures (PAP), and cardiac output (CO) animals were randomized into (1) CGV group and (2) TLV group. In the TLV group partial liquid ventilation was initiated with instillation of perfluoroctylbromide (12 ml/kg). After 15 min, TLV was established for 3 hr applying a volume-controlled, pressure-limited, time-cycled ventilation mode using a double-piston configured TLV. Controls (CGV) remained gas-ventilated throughout the experiment. Results: During TLV, heart rate, CO, PAP, MAP, CVP, and LAP as well as derived hemodynamic variables, arterial and mixed venous blood gases, oxygen delivery, PVR, and SVR did not differ significantly compared to CGV. Conclusions: Liquid tidal volumes suitable for long-term TLV in non-injured rabbits do not significantly impair CO, blood pressure, and oxygen dynamics when compared to CGV. Pediatr Pulmonol. 2011;46:964-975. (C) 2011 Wiley-Liss, Inc."],["dc.description.sponsorship","Else-Kroener-Fresenius-Foundation, Bad Homburg, Germany"],["dc.identifier.doi","10.1002/ppul.21461"],["dc.identifier.isi","000295258700004"],["dc.identifier.pmid","21538968"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/21897"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","8755-6863"],["dc.title","Cardiopulmonary Function and Oxygen Delivery During Total Liquid Ventilation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","107"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Respiratory Medicine"],["dc.bibliographiccitation.lastpage","113"],["dc.bibliographiccitation.volume","104"],["dc.contributor.author","Raupach, Tobias"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Herrmann, Peter"],["dc.contributor.author","Luethje, Lars"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Andreas, Stefan"],["dc.date.accessioned","2017-09-07T11:46:44Z"],["dc.date.available","2017-09-07T11:46:44Z"],["dc.date.issued","2010"],["dc.description.abstract","Objectives: Neurohumoral. activation has been shown to be present in patients with chronic obstructive pulmonary disease (COPD). The increase in respiratory muscle work might be responsible for the observed elevation of sympathetic tone via a respiratory muscle ergoreflex in these patients. The aim of this study is to investigate whether moderately increasing inspiratory resistive loading will impact on sympathetic activity in healthy subjects and COPD patients. Methods: Efferent muscle sympathetic nerve activity, blood pressure, heart rate and respiratory movements were continuously measured in 15 patients and 15 healthy control subjects. In order to increase work of breathing as evaluated by the tension-time index, inspiratory resistive loading was performed white patients were breathing through a spirometer. Results: At baseline, sympathetic nerve activity was significantly elevated in patients. Resistive loading increased work of breathing (tension-time index) by roughly 110% (COPD) and 130% (controls) but did not significantly alter blood gases or sympathetic activity in either group. Conclusions: Doubting the work of breathing does not affect sympathetic activation in COPD patients or healthy control subjects. Thus in COPD the respiratory muscle ergoreflex does not seem to play a major rote in sympathoexcitation. (C) 2009 Elsevier Ltd. All rights reserved."],["dc.identifier.doi","10.1016/j.rmed.2009.06.011"],["dc.identifier.gro","3143004"],["dc.identifier.isi","000274889300015"],["dc.identifier.pmid","19619996"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/471"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","W B Saunders Co Ltd"],["dc.relation.issn","0954-6111"],["dc.title","Inspiratory resistive loading does not increase sympathetic tone in COPD"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article
    [["dc.bibliographiccitation.firstpage","002367722098336"],["dc.bibliographiccitation.journal","Laboratory Animals"],["dc.contributor.author","Raisis, Anthea L"],["dc.contributor.author","Hosgood, Giselle L"],["dc.contributor.author","Crawford, Nicholas"],["dc.contributor.author","Kästner, Sabine"],["dc.contributor.author","Musk, Gabrielle C"],["dc.contributor.author","Herrmann, Peter"],["dc.contributor.author","Mosing, Martina"],["dc.date.accessioned","2021-04-14T08:28:11Z"],["dc.date.available","2021-04-14T08:28:11Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1177/0023677220983366"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82525"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1758-1117"],["dc.relation.issn","0023-6772"],["dc.title","Comparison of pulmonary function in isoflurane anaesthetized ventilated sheep ( Ovis aries ) following administration of intravenous xylazine versus medetomidine"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.journal","Pulmonology"],["dc.contributor.author","Stephani, C."],["dc.contributor.author","Herrmann, P."],["dc.contributor.author","Ritter, C.O."],["dc.contributor.author","Lotz, J."],["dc.contributor.author","Saager, L."],["dc.contributor.author","Meissner, K."],["dc.contributor.author","Moerer, O."],["dc.date.accessioned","2021-06-01T10:49:53Z"],["dc.date.available","2021-06-01T10:49:53Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.pulmoe.2020.12.011"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86451"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.issn","2531-0437"],["dc.title","Anatomic lung recruitment in the early phase of severe COVID-19-pneumonia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI