Options
Fujita, Buntaro
Loading...
Preferred name
Fujita, Buntaro
Official Name
Fujita, Buntaro
Alternative Name
Fujita, B.
Now showing 1 - 8 of 8
2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","cmdc.202100222"],["dc.bibliographiccitation.firstpage","3300"],["dc.bibliographiccitation.issue","21"],["dc.bibliographiccitation.journal","ChemMedChem"],["dc.bibliographiccitation.lastpage","3305"],["dc.bibliographiccitation.volume","16"],["dc.contributor.affiliation","Raad, Farah S.; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Khan, Taukeer A.; 2\r\nDZHK (German Center for Cardiovascular Research) – Partner site Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Esser, Tilman U.; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Hudson, James E.; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Seth, Bhakti Irene; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Fujita, Buntaro; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Gandamala, Ravi; 3\r\nInstitute of Organic and Biomolecular Chemistry\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.affiliation","Tietze, Lutz F.; 2\r\nDZHK (German Center for Cardiovascular Research) – Partner site Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Zimmermann, Wolfram-Hubertus; 1\r\nInstitute of Pharmacology and Toxicology\r\nUniversity Medical Center\r\nGeorg-August-University\r\nGöttingen Germany"],["dc.contributor.author","Raad, Farah S."],["dc.contributor.author","Khan, Taukeer A."],["dc.contributor.author","Esser, Tilman U."],["dc.contributor.author","Hudson, James E."],["dc.contributor.author","Seth, Bhakti Irene"],["dc.contributor.author","Fujita, Buntaro"],["dc.contributor.author","Gandamala, Ravi"],["dc.contributor.author","Tietze, Lutz F."],["dc.contributor.author","Zimmermann, Wolfram H."],["dc.date.accessioned","2021-10-01T09:58:46Z"],["dc.date.available","2021-10-01T09:58:46Z"],["dc.date.issued","2021"],["dc.date.updated","2022-03-21T00:45:29Z"],["dc.description.abstract","Abstract Human pluripotent stem cells (hPSCs) hold great promise for applications in cell therapy and drug screening in the cardiovascular field. Bone morphogenetic protein 4 (BMP4) is key for early cardiac mesoderm induction in hPSC and subsequent cardiomyocyte derivation. Small‐molecular BMP4 mimetics may help to standardize cardiomyocyte derivation from hPSCs. Based on observations that chalcones can stimulate BMP4 signaling pathways, we hypothesized their utility in cardiac mesoderm induction. To test this, we set up a two‐tiered screening strategy, (1) for directed differentiation of hPSCs with commercially available chalcones (4’‐hydroxychalcone [4’HC] and Isoliquiritigen) and 24 newly synthesized chalcone derivatives, and (2) a functional screen to assess the propensity of the obtained cardiomyocytes to self‐organize into contractile engineered human myocardium (EHM). We identified 4’HC, 4‐fluoro‐4’‐methoxychalcone, and 4‐fluoro‐4’‐hydroxychalcone as similarly effective in cardiac mesoderm induction, but only 4’HC as an effective replacement for BMP4 in the derivation of contractile EHM‐forming cardiomyocytes."],["dc.description.abstract","Have a little heart: A screen for mesoderm inducing chalcones in human pluripotent stem cell cultures identified 4’‐hydroxychalcone (4’HC) as an effective replacement for bone‐morphogenetic protein 4 (BMP4) in supporting the derivation of engineered heart muscle (EHM)‐formation competent cardiomyocytes. image"],["dc.description.sponsorship","German Center for Cardiovascular Research"],["dc.description.sponsorship","German Federal Ministry for Science and Education"],["dc.description.sponsorship","German Research Foundation http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship","Fondation Leducq http://dx.doi.org/10.13039/501100001674"],["dc.identifier.doi","10.1002/cmdc.202100222"],["dc.identifier.pmid","34309224"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/90137"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/432"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1860-7187"],["dc.relation.issn","1860-7179"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited."],["dc.title","Chalcone‐Supported Cardiac Mesoderm Induction in Human Pluripotent Stem Cells for Heart Muscle Engineering"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2017Book Chapter [["dc.bibliographiccitation.firstpage","219"],["dc.bibliographiccitation.lastpage","239"],["dc.contributor.author","Fujita, Buntaro"],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Ensminger, Stephan"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.editor","Ieda, Masaki"],["dc.contributor.editor","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2019-02-27T13:40:08Z"],["dc.date.available","2019-02-27T13:40:08Z"],["dc.date.issued","2017"],["dc.description.abstract","Heart muscle restoration with in vitro engineered tissue constructs is an exciting and rapidly advancing field. Feasibility, safety, and efficacy data have been obtained in animal models. First clinical trials are on the way to explore the therapeutic utility of cell-free and non-contractile cell-containing grafts. Engineering of contractile patches according to current good manufacturing practice (cGMP) for bona fide myocardial re-muscularization and scalability to address clinical demands remains challenging. Proof-of-concept for solutions to address obvious technical hurdles exists, and it can be anticipated that the first generation of clinically applicable engineered heart muscle (EHM) grafts will become available in the near future. Foreseeable, but likely manageable risks include arrhythmia induction and teratoma formation. Remaining biomedical challenges pertain to the requirement of immune suppression and the strategic approach to optimize immune suppression without subjecting the target patient population to an unacceptable risk. This chapter summarizes the current state of tissue-engineered heart repair with a special emphasis on knowledge gained from in vitro and in vivo studies as well as issues pertaining to transplant immunology and cGMP process development."],["dc.identifier.doi","10.1007/978-3-319-56106-6_10"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/57646"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/185"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.publisher","Springer"],["dc.publisher.place","Cham, Switzerland"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation.crisseries","Cardiac and Vascular Biology"],["dc.relation.doi","10.1007/978-3-319-56106-6"],["dc.relation.isbn","978-3-319-56104-2"],["dc.relation.isbn","978-3-319-56106-6"],["dc.relation.ispartof","Cardiac Regeneration"],["dc.relation.ispartofseries","Cardiac and Vascular Biology"],["dc.relation.issn","2509-7830"],["dc.relation.issn","2509-7849"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","State-of-the-Art in Tissue-Engineered Heart Repair"],["dc.type","book_chapter"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article Overview [["dc.bibliographiccitation.artnumber","78"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Current Cardiology Reports"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Fujita, Buntaro"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2018-04-23T11:49:18Z"],["dc.date.available","2018-04-23T11:49:18Z"],["dc.date.issued","2017"],["dc.description.abstract","Purpose of Review This review provides an overview of the current state of tissue-engineered heart repair with a special focus on the anticipated modes of action of tissue-engineered therapy candidates and particular implications as to transplant immunology. Recent Findings Myocardial tissue engineering technologies have made tremendous advances in recent years. Numerous different strategies are under investigation and have reached different stages on their way to clinical translation. Studies in animal models demonstrated that heart repair requires either remuscularization by delivery of bona fide cardiomyocytes or paracrine support for the activation of endogenous repair mechanisms. Tissue engineering approaches result in enhanced cardiomyocyte retention and sustained remuscularization, but may also be explored for targeted paracrine or mechanical support. Some of the more advanced tissue engineering approaches are already tested clinically; others are at late stages of pre-clinical development. Process optimization towards cGMP compatibility and clinical scalability of contractile engineered human myocardium is an essential step towards clinical translation. Long-term allograft retention can be achieved under immune suppression. HLA matching may be an option to enhance graft retention and reduce the need for comprehensive immune suppression. Summary Tissue-engineered heart repair is entering the clinical stage of the translational pipeline. Like in any effective therapy, side effects must be anticipated and carefully controlled. Allograft implantation under immune suppression is the most likely clinical scenario. Strategies to overcome transplant rejection are evolving and may further boost the clinical acceptance of tissue-engineered heart repair."],["dc.identifier.doi","10.1007/s11886-017-0892-4"],["dc.identifier.gro","3142520"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13675"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/174"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.issn","1523-3782"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","Myocardial Tissue Engineering for Regenerative Applications"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article Overview [["dc.bibliographiccitation.firstpage","197"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Clinical Pharmacology & Therapeutics"],["dc.bibliographiccitation.lastpage","199"],["dc.bibliographiccitation.volume","102"],["dc.contributor.author","Fujita, B."],["dc.contributor.author","Zimmermann, W.-H."],["dc.date.accessioned","2018-04-23T11:49:22Z"],["dc.date.available","2018-04-23T11:49:22Z"],["dc.date.issued","2017"],["dc.description.abstract","There is a pressing need for the development of advanced heart failure therapeutics. Current state‐of‐the‐art is protection from neurohumoral overstimulation, which fails to address the underlying cause of heart failure, namely loss of cardiomyocytes. Implantation of stem cell‐derived cardiomyocytes via tissue‐engineered myocardium is being advanced to realize the remuscularization of the failing heart. Here, we discuss pharmacological challenges pertaining to the clinical translation of tissue‐engineered heart repair with a focus on engineered heart muscle (EHM)."],["dc.identifier.doi","10.1002/cpt.724"],["dc.identifier.gro","3142525"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13681"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/173"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation.issn","0009-9236"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","Engineered Heart Repair"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","overview_ja"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.journal","Interactive Cardiovascular and Thoracic Surgery"],["dc.contributor.author","Fujita, Buntaro"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2020-12-10T18:19:16Z"],["dc.date.available","2020-12-10T18:19:16Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1093/icvts/ivy208"],["dc.identifier.eissn","1569-9285"],["dc.identifier.issn","1569-9293"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75184"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Myocardial tissue engineering strategies for heart repair: current state of the art"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2013Journal Article [["dc.bibliographiccitation.firstpage","749"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","CLIMATE OF THE PAST"],["dc.bibliographiccitation.lastpage","766"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Svensson, Anders"],["dc.contributor.author","Bigler, M."],["dc.contributor.author","Blunier, T."],["dc.contributor.author","Clausen, H. B."],["dc.contributor.author","Dahl-Jensen, Dorthe"],["dc.contributor.author","Fischer, H."],["dc.contributor.author","Fujita, S."],["dc.contributor.author","Goto-Azuma, K."],["dc.contributor.author","Johnsen, S. J."],["dc.contributor.author","Kawamura, Kensuke"],["dc.contributor.author","Kipfstuhl, Sepp"],["dc.contributor.author","Kohno, M."],["dc.contributor.author","Parrenin, F."],["dc.contributor.author","Popp, T."],["dc.contributor.author","Rasmussen, Steve"],["dc.contributor.author","Schwander, J."],["dc.contributor.author","Seierstad, I."],["dc.contributor.author","Severi, M."],["dc.contributor.author","Steffensen, J. P."],["dc.contributor.author","Udisti, Roberto"],["dc.contributor.author","Uemura, R."],["dc.contributor.author","Vallelonga, P."],["dc.contributor.author","Vinther, B. M."],["dc.contributor.author","Wegner, A."],["dc.contributor.author","Wilhelms, Frank"],["dc.contributor.author","Winstrup, M."],["dc.date.accessioned","2018-11-07T09:30:07Z"],["dc.date.available","2018-11-07T09:30:07Z"],["dc.date.issued","2013"],["dc.description.abstract","The Toba eruption that occurred some 74 ka ago in Sumatra, Indonesia, is among the largest volcanic events on Earth over the last 2 million years. Tephra from this eruption has been spread over vast areas in Asia, where it constitutes a major time marker close to the Marine Isotope Stage 4/5 boundary. As yet, no tephra associated with Toba has been identified in Greenland or Antarctic ice cores. Based on new accurate dating of Toba tephra and on accurately dated European stalagmites, the Toba event is known to occur between the onsets of Greenland interstadials (GI) 19 and 20. Furthermore, the existing linking of Greenland and Antarctic ice cores by gas records and by the bipolar seesaw hypothesis suggests that the Antarctic counterpart is situated between Antarctic Isotope Maxima (AIM) 19 and 20. In this work we suggest a direct synchronization of Greenland (NGRIP) and Antarctic (EDML) ice cores at the Toba eruption based on matching of a pattern of bipolar volcanic spikes. Annual layer counting between volcanic spikes in both cores allows for a unique match. We first demonstrate this bipolar matching technique at the already synchronized Laschamp geomagnetic excursion (41 ka BP) before we apply it to the suggested Toba interval. The Toba synchronization pattern covers some 2000 yr in GI-20 and AIM19/20 and includes nine acidity peaks that are recognized in both ice cores. The suggested bipolar Toba synchronization has decadal precision. It thus allows a determination of the exact phasing of inter-hemispheric climate in a time interval of poorly constrained ice core records, and it allows for a discussion of the climatic impact of the Toba eruption in a global perspective. The bipolar linking gives no support for a long-term global cooling caused by the Toba eruption as Antarctica experiences a major warming shortly after the event. Furthermore, our bipolar match provides a way to place palaeo-environmental records other than ice cores into a precise climatic context."],["dc.identifier.doi","10.5194/cp-9-749-2013"],["dc.identifier.isi","000317009700016"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10609"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31225"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Copernicus Gesellschaft Mbh"],["dc.relation.issn","1814-9332"],["dc.relation.issn","1814-9324"],["dc.relation.orgunit","Fakultät für Geowissenschaften und Geographie"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0/"],["dc.title","Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP)"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI WOS2017Journal Article Research Paper [["dc.bibliographiccitation.artnumber","P2545"],["dc.bibliographiccitation.firstpage","533"],["dc.bibliographiccitation.issue","suppl_1"],["dc.bibliographiccitation.journal","European Heart Journal"],["dc.bibliographiccitation.volume","38"],["dc.contributor.author","Soong, P. L."],["dc.contributor.author","Sur, S."],["dc.contributor.author","Fujita, B."],["dc.contributor.author","Grishina, E."],["dc.contributor.author","Kuzyakova, M."],["dc.contributor.author","Tiburcy, M."],["dc.contributor.author","Zimmermann, W. H."],["dc.date.accessioned","2019-02-27T09:52:25Z"],["dc.date.available","2019-02-27T09:52:25Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1093/eurheartj/ehx502.P2545"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/57635"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/178"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation.issn","0195-668X"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","Inducible paracrine release of IGF-1 improves heart muscle thickness and function"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2017Conference Abstract [["dc.bibliographiccitation.firstpage","S380"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Journal of Heart and Lung Transplantation"],["dc.bibliographiccitation.lastpage","S381"],["dc.bibliographiccitation.volume","36"],["dc.contributor.author","Fujita, B."],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Bremmer, Felix"],["dc.contributor.author","Ensminger, S."],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.date.accessioned","2018-11-07T10:25:26Z"],["dc.date.available","2018-11-07T10:25:26Z"],["dc.date.issued","2017"],["dc.identifier.isi","000398839801287"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42860"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Elsevier Science Inc"],["dc.publisher.place","New york"],["dc.relation.conference","37th Annual Meeting and Scientific Sessions of the International-Society-for-Heart-and-Lung-Transplantation (ISHLT)"],["dc.relation.eventlocation","San Diego, CA"],["dc.relation.issn","1557-3117"],["dc.relation.issn","1053-2498"],["dc.title","Cardio-Supportive Activity of Human Blood Monocytes in Human Engineered Heart Muscle"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details WOS