Now showing 1 - 2 of 2
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","e1994"],["dc.bibliographiccitation.journal","Cell Death and Disease"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Oliveira, Luis M. A."],["dc.contributor.author","Falomir-Lockhart, Lisandro J."],["dc.contributor.author","Botelho, Michelle Gralle"],["dc.contributor.author","Lin, K-H"],["dc.contributor.author","Wales, Pauline"],["dc.contributor.author","Koch, Jan Christoph"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","Taschenberger, Holger"],["dc.contributor.author","Outeiro, Tiago Fleming"],["dc.contributor.author","Lingor, Paul"],["dc.contributor.author","Schuele, B."],["dc.contributor.author","Arndt-Jovin, Donna J."],["dc.contributor.author","Jovin, Thomas M."],["dc.date.accessioned","2018-11-07T09:49:15Z"],["dc.date.available","2018-11-07T09:49:15Z"],["dc.date.issued","2015"],["dc.description.abstract","We have assessed the impact of alpha-synuclein overexpression on the differentiation potential and phenotypic signatures of two neural-committed induced pluripotent stem cell lines derived from a Parkinson's disease patient with a triplication of the human SNCA genomic locus. In parallel, comparative studies were performed on two control lines derived from healthy individuals and lines generated from the patient iPS-derived neuroprogenitor lines infected with a lentivirus incorporating a small hairpin RNA to knock down the SNCA mRNA. The SNCA triplication lines exhibited a reduced capacity to differentiate into dopaminergic or GABAergic neurons and decreased neurite outgrowth and lower neuronal activity compared with control cultures. This delayed maturation phenotype was confirmed by gene expression profiling, which revealed a significant reduction in mRNA for genes implicated in neuronal differentiation such as delta-like homolog 1 (DLK1), gamma-aminobutyric acid type B receptor subunit 2 (GABABR2), nuclear receptor related 1 protein (NURR1), G-protein-regulated inward-rectifier potassium channel 2 (GIRK-2) and tyrosine hydroxylase (TH). The differentiated patient cells also demonstrated increased autophagic flux when stressed with chloroquine. We conclude that a two-fold overexpression of alpha-synuclein caused by a triplication of the SNCA gene is sufficient to impair the differentiation of neuronal progenitor cells, a finding with implications for adult neurogenesis and Parkinson's disease progression, particularly in the context of bioenergetic dysfunction."],["dc.identifier.doi","10.1038/cddis.2015.318"],["dc.identifier.isi","000367155300027"],["dc.identifier.pmid","26610207"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12755"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/35470"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2041-4889"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Elevated alpha-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article
    [["dc.bibliographiccitation.artnumber","e11323"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Kantelhardt, Sven Rainer"],["dc.contributor.author","Caarls, Wouter"],["dc.contributor.author","de Vries, Anthony H. B."],["dc.contributor.author","Hagen, Guy M."],["dc.contributor.author","Jovin, Thomas M."],["dc.contributor.author","Schulz-Schaeffer, Walter J."],["dc.contributor.author","Rohde, Veit"],["dc.contributor.author","Giese, Alf"],["dc.contributor.author","Arndt-Jovin, Donna J."],["dc.date.accessioned","2018-11-07T08:42:07Z"],["dc.date.available","2018-11-07T08:42:07Z"],["dc.date.issued","2010"],["dc.description.abstract","Background: The current therapy of malignant gliomas is based on surgical resection, radio-chemotherapy and chemotherapy. Recent retrospective case-series have highlighted the significance of the extent of resection as a prognostic factor predicting the course of the disease. Complete resection in low-grade gliomas that show no MRI-enhanced images are especially difficult. The aim in this study was to develop a robust, specific, new fluorescent probe for glioma cells that is easy to apply to live tumor biopsies and could identify tumor cells from normal brain cells at all levels of magnification. Methodology/Principal Findings: In this investigation we employed brightly fluorescent, photostable quantum dots (QDs) to specifically target epidermal growth factor receptor (EGFR) that is upregulated in many gliomas. Living glioma and normal cells or tissue biopsies were incubated with QDs coupled to EGF and/or monoclonal antibodies against EGFR for 30 minutes, washed and imaged. The data include results from cell-culture, animal model and ex vivo human tumor biopsies of both low-grade and high-grade gliomas and show high probe specificity. Tumor cells could be visualized from the macroscopic to single cell level with contrast ratios as high as 1000: 1 compared to normal brain tissue. Conclusions/Significance: The ability of the targeted probes to clearly distinguish tumor cells in low-grade tumor biopsies, where no enhanced MRI image was obtained, demonstrates the great potential of the method. We propose that future application of specifically targeted fluorescent particles during surgery could allow intraoperative guidance for the removal of residual tumor cells from the resection cavity and thus increase patient survival."],["dc.identifier.doi","10.1371/journal.pone.0011323"],["dc.identifier.isi","000279370000006"],["dc.identifier.pmid","20614029"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6912"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/19633"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 2.5"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.5"],["dc.title","Specific Visualization of Glioma Cells in Living Low-Grade Tumor Tissue"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS