Options
Thüne, Katrin
Loading...
Preferred name
Thüne, Katrin
Official Name
Thüne, Katrin
Alternative Name
Thüne, K.
Thuene, Katrin
Thuene, K.
Thune, Katrin
Thune, K.
Main Affiliation
Now showing 1 - 2 of 2
2017Journal Article [["dc.bibliographiccitation.artnumber","83"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Molecular Neurodegeneration"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Thüne, Katrin"],["dc.contributor.author","Tahir, Waqas"],["dc.contributor.author","Kanata, Eirini"],["dc.contributor.author","Diaz-Lucena, Daniela"],["dc.contributor.author","Xanthopoulos, Konstantinos"],["dc.contributor.author","Kovatsi, Eleni"],["dc.contributor.author","Pleschka, Catharina"],["dc.contributor.author","Garcia-Esparcia, Paula"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Ozbay, Duru"],["dc.contributor.author","Correia, Susana"],["dc.contributor.author","Correia, Ângela"],["dc.contributor.author","Milosevic, Ira"],["dc.contributor.author","Andréoletti, Olivier"],["dc.contributor.author","Fernández-Borges, Natalia"],["dc.contributor.author","Vorberg, Ina M."],["dc.contributor.author","Glatzel, Markus"],["dc.contributor.author","Sklaviadis, Theodoros"],["dc.contributor.author","Torres, Juan Maria"],["dc.contributor.author","Krasemann, Susanne"],["dc.contributor.author","Sánchez-Valle, Raquel"],["dc.contributor.author","Ferrer, Isidro"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2019-07-09T11:44:59Z"],["dc.date.available","2019-07-09T11:44:59Z"],["dc.date.issued","2017"],["dc.description.abstract","Background YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. Methods In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. Results YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer’s disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around β-amyloid plaques, and surrounding vessels with β-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson’s disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. Conclusions Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1186/s13024-017-0226-4"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14995"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59135"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15151 but duplicate"],["dc.rights","CC BY 4.0"],["dc.rights.access","openAccess"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.artnumber","220"],["dc.bibliographiccitation.journal","Frontiers in Aging Neuroscience"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Kanata, Eirini"],["dc.contributor.author","Thüne, Katrin"],["dc.contributor.author","Xanthopoulos, Konstantinos"],["dc.contributor.author","Ferrer, Isidre"],["dc.contributor.author","Dafou, Dimitra"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Sklaviadis, Theodoros"],["dc.contributor.author","Llorens, Franc"],["dc.date.accessioned","2019-07-09T11:45:43Z"],["dc.date.available","2019-07-09T11:45:43Z"],["dc.date.issued","2018"],["dc.description.abstract","Prion diseases are transmissible progressive neurodegenerative conditions characterized by rapid neuronal loss accompanied by a heterogeneous neuropathology, including spongiform degeneration, gliosis and protein aggregation. The pathogenic mechanisms and the origins of prion diseases remain unclear on the molecular level. Even though neurodegenerative diseases, including prion diseases, represent distinct entities, their pathogenesis shares a number of features including disturbed protein homeostasis, an overload of protein clearance pathways, the aggregation of pathological altered proteins, and the dysfunction and/or loss of specific neuronal populations. Recently, direct links have been established between neurodegenerative diseases and miRNA dysregulated patterns. miRNAs are a class of small non-coding RNAs involved in the fundamental post-transcriptional regulation of gene expression. Studies of miRNA alterations in the brain and body fluids in human prion diseases provide important insights into potential miRNA-associated disease mechanisms and biomarker candidates. miRNA alterations in prion disease models represent a unique tool to investigate the cause-consequence relationships of miRNA dysregulation in prion disease pathology, and to evaluate the use of miRNAs in diagnosis as biomarkers. Here, we provide an overview of studies on miRNA alterations in human prion diseases and relevant disease models, in relation to pertinent studies on other neurodegenerative diseases."],["dc.identifier.doi","10.3389/fnagi.2018.00220"],["dc.identifier.pmid","30083102"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15293"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59293"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1663-4365"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","MicroRNA Alterations in the Brain and Body Fluids of Humans and Animal Prion Disease Models: Current Status and Perspectives"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC