Options
Nagarajan, Sankari
Loading...
Preferred name
Nagarajan, Sankari
Official Name
Nagarajan, Sankari
Alternative Name
Nagarajan, S.
Now showing 1 - 7 of 7
2015Journal Article [["dc.bibliographiccitation.firstpage","7305"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Oncotarget"],["dc.bibliographiccitation.lastpage","7317"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Nagarajan, Sankari"],["dc.contributor.author","Benito-Garagorri, Eva"],["dc.contributor.author","Fischer, Andre"],["dc.contributor.author","Johnsen, Steven A."],["dc.date.accessioned","2017-09-07T11:52:22Z"],["dc.date.available","2017-09-07T11:52:22Z"],["dc.date.issued","2015"],["dc.description.abstract","Hormone-dependent gene expression requires dynamic and coordinated epigenetic changes. Estrogen receptor-positive (ER+) breast cancer is particularly dependent upon extensive chromatin remodeling and changes in histone modifications for the induction of hormone-responsive gene expression. Our previous studies established an important role of bromodomain-containing protein-4 (BRD4) in promoting estrogen-regulated transcription and proliferation of ER+ breast cancer cells. Here, we investigated the association between genome-wide occupancy of histone H4 acetylation at lysine 12 (H4K12ac) and BRD4 in the context of estrogen-induced transcription. Similar to BRD4, we observed that H4K12ac occupancy increases near the transcription start sites (TSS) of estrogen-induced genes as well as at distal ERα binding sites in an estrogen-dependent manner. Interestingly, H4K12ac occupancy highly correlates with BRD4 binding and enhancer RNA production on ERα-positive enhancers. Consistent with an importance in estrogen-induced gene transcription, H4K12ac occupancy globally increased in ER-positive cells relative to ER-negative cells and these levels were further increased by estrogen treatment in an ERα-dependent manner. Together, these findings reveal a strong correlation between H4K12ac and BRD4 occupancy with estrogen-dependent gene transcription and further suggest that modulators of H4K12ac and BRD4 may serve as new therapeutic targets for hormone-dependent cancers."],["dc.identifier.doi","10.18632/oncotarget.3439"],["dc.identifier.gro","3144913"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13612"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2590"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","1949-2553"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","H4K12ac is regulated by estrogen receptor-alpha and is associated with BRD4 function and inducible transcription"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2012Journal Article [["dc.bibliographiccitation.artnumber","13"],["dc.bibliographiccitation.journal","Epigenetics & Chromatin"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Prenzel, Tanja"],["dc.contributor.author","Kramer, Frank"],["dc.contributor.author","Bedi, Upasana"],["dc.contributor.author","Nagarajan, Sankari"],["dc.contributor.author","Beißbarth, Tim"],["dc.contributor.author","Johnsen, Steven Arthur"],["dc.date.accessioned","2018-11-07T09:07:07Z"],["dc.date.available","2018-11-07T09:07:07Z"],["dc.date.issued","2012"],["dc.description.abstract","Background: In conjunction with posttranslational chromatin modifications, proper arrangement of higher order chromatin structure appears to be important for controlling transcription in the nucleus. Recent genome-wide studies have shown that the Estrogen Receptor-alpha (ER alpha), encoded by the ESR1 gene, nucleates tissue-specific long-range chromosomal interactions in collaboration with the cohesin complex. Furthermore, the Mediator complex not only regulates ERa activity, but also interacts with the cohesin complex to facilitate long-range chromosomal interactions. However, whether the cohesin and Mediator complexes function together to contribute to estrogen-regulated gene transcription remains unknown. Results: In this study we show that depletion of the cohesin subunit SMC3 or the Mediator subunit MED12 significantly impairs the ER alpha-regulated transcriptome. Surprisingly, SMC3 depletion appears to elicit this effect indirectly by rapidly decreasing ESR1 transcription and ER alpha protein levels. Moreover, we provide evidence that both SMC3 and MED12 colocalize on the ESR1 gene and are mutually required for their own occupancy as well as for RNAPII occupancy across the ESR1 gene. Finally, we show that extended proteasome inhibition decreases the mRNA expression of cohesin subunits which accompanies a decrease in ESR1 mRNA and ERa protein levels as well as estrogen-regulated transcription. Conclusions: These results identify the ESR1 gene as a cohesin/Mediator-dependent gene and indicate that this regulation may potentially be exploited for the treatment of estrogen-dependent breast cancer."],["dc.identifier.doi","10.1186/1756-8935-5-13"],["dc.identifier.isi","000310834100001"],["dc.identifier.pmid","22913342"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12877"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25716"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1756-8935"],["dc.rights","CC BY 2.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/2.0"],["dc.title","Cohesin is required for expression of the estrogen receptor-alpha (ESR1) gene"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.artnumber","32"],["dc.bibliographiccitation.journal","Genome Biology"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Xie, Wanhua"],["dc.contributor.author","Nagarajan, Sankari"],["dc.contributor.author","Baumgart, Simon J."],["dc.contributor.author","Kosinsky, Robyn Laura"],["dc.contributor.author","Najafova, Zeynab"],["dc.contributor.author","Kari, Vijayalakshmi"],["dc.contributor.author","Hennion, Magali"],["dc.contributor.author","Indenbirken, Daniela"],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Grundhoff, Adam"],["dc.contributor.author","Wegwitz, Florian"],["dc.contributor.author","Mansouri, Ahmed"],["dc.contributor.author","Johnsen, Steven A."],["dc.date.accessioned","2018-11-07T10:27:18Z"],["dc.date.available","2018-11-07T10:27:18Z"],["dc.date.issued","2017"],["dc.description.abstract","Background: Monoubiquitination of H2B (H2Bub1) is a largely enigmatic histone modification that has been linked to transcriptional elongation. Because of this association, it has been commonly assumed that H2Bub1 is an exclusively positively acting histone modification and that increased H2Bub1 occupancy correlates with increased gene expression. In contrast, depletion of the H2B ubiquitin ligases RNF20 or RNF40 alters the expression of only a subset of genes. Results: Using conditional Rnf40 knockout mouse embryo fibroblasts, we show that genes occupied by low to moderate amounts of H2Bub1 are selectively regulated in response to Rnf40 deletion, whereas genes marked by high levels of H2Bub1 are mostly unaffected by Rnf40 loss. Furthermore, we find that decreased expression of RNF40-dependent genes is highly associated with widespread narrowing of H3K4me3 peaks. H2Bub1 promotes the broadening of H3K4me3 to increase transcriptional elongation, which together lead to increased tissue- specific gene transcription. Notably, genes upregulated following Rnf40 deletion, including Foxl2, are enriched for H3K27me3, which is decreased following Rnf40 deletion due to decreased expression of the Ezh2 gene. As a consequence, increased expression of some RNF40-\"suppressed\" genes is associated with enhancer activation via FOXL2. Conclusion: Together these findings reveal the complexity and context-dependency whereby one histone modification can have divergent effects on gene transcription. Furthermore, we show that these effects are dependent upon the activity of other epigenetic regulatory proteins and histone modifications."],["dc.identifier.doi","10.1186/s13059-017-1159-5"],["dc.identifier.isi","000394828000003"],["dc.identifier.pmid","28209164"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14250"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43221"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/14993 but duplicate"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1474-760X"],["dc.rights","CC BY 4.0"],["dc.rights.access","openAccess"],["dc.rights.holder","The Author(s)."],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","RNF40 regulates gene expression in an epigenetic context-dependent manner"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","3130"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Nucleic Acids Research"],["dc.bibliographiccitation.lastpage","3145"],["dc.bibliographiccitation.volume","45"],["dc.contributor.author","Nagarajan, Sankari"],["dc.contributor.author","Bedi, Upasana"],["dc.contributor.author","Budida, Anusha"],["dc.contributor.author","Hamdan, Feda H."],["dc.contributor.author","Mishra, Vivek Kumar"],["dc.contributor.author","Najafova, Zeynab"],["dc.contributor.author","Xie, Wanhua"],["dc.contributor.author","Alawi, Malik"],["dc.contributor.author","Indenbirken, Daniela"],["dc.contributor.author","Knapp, Stefan"],["dc.contributor.author","Chiang, Cheng-Ming"],["dc.contributor.author","Grundhoff, Adam"],["dc.contributor.author","Kari, Vijayalakshmi"],["dc.contributor.author","Scheel, Christina H."],["dc.contributor.author","Wegwitz, Florian"],["dc.contributor.author","Johnsen, Steven A."],["dc.date.accessioned","2018-11-07T10:25:04Z"],["dc.date.available","2018-11-07T10:25:04Z"],["dc.date.issued","2017"],["dc.description.abstract","Bromodomain-containing protein 4 (BRD4) is a member of the bromo-and extraterminal (BET) domain-containing family of epigenetic readers which is under intensive investigation as a target for anti-tumor therapy. BRD4 plays a central role in promoting the expression of select subsets of genes including many driven by oncogenic transcription factors and signaling pathways. However, the role of BRD4 and the effects of BET inhibitors in non-transformed cells remain mostly unclear. We demonstrate that BRD4 is required for the maintenance of a basal epithelial phenotype by regulating the expression of epithelial-specific genes including TP63 and Grainy Head-like transcription factor-3 (GRHL3) in non-transformed basal-like mammary epithelial cells. Moreover, BRD4 occupancy correlates with enhancer activity and enhancer RNA (eRNA) transcription. Motif analyses of cell context-specific BRD4-enriched regions predicted the involvement of FOXOtranscription factors. Consistently, activation of FOXO1 function via inhibition of EGFR-AKT signaling promoted the expression of TP63 and GRHL3. Moreover, activation of Src kinase signaling and FOXO1 inhibition decreased the expression of FOXO/BRD4 target genes. Together, our findings support a function for BRD4 in promoting basal mammary cell epithelial differentiation, at least in part, by regulating FOXO factor function on enhancers to activate TP63 and GRHL3 expression."],["dc.identifier.doi","10.1093/nar/gkw1276"],["dc.identifier.isi","000398376200026"],["dc.identifier.pmid","27980063"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14764"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42778"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","1362-4962"],["dc.relation.issn","0305-1048"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0"],["dc.title","BRD4 promotes p63 and GRHL3 expression downstream of FOXO in mammary epithelial cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2014Journal Article [["dc.bibliographiccitation.firstpage","459"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Cell Reports"],["dc.bibliographiccitation.lastpage","468"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Nagarajan, Sankari"],["dc.contributor.author","Hossan, Tareq"],["dc.contributor.author","Alawi, Malik"],["dc.contributor.author","Najafova, Zeynab"],["dc.contributor.author","Indenbirken, Daniela"],["dc.contributor.author","Bedi, Upasana"],["dc.contributor.author","Taipaleenmaeki, Hanna"],["dc.contributor.author","Ben-Batalla, Isabel"],["dc.contributor.author","Scheller, Marina"],["dc.contributor.author","Loges, Sonja"],["dc.contributor.author","Knapp, Stefan"],["dc.contributor.author","Hesse, Eric"],["dc.contributor.author","Chiang, Cheng-Ming"],["dc.contributor.author","Grundhoff, Adam"],["dc.contributor.author","Johnsen, Steven A."],["dc.date.accessioned","2018-11-07T09:37:31Z"],["dc.date.available","2018-11-07T09:37:31Z"],["dc.date.issued","2014"],["dc.description.abstract","The estrogen receptor alpha (ER alpha) controls cell proliferation and tumorigenesis by recruiting various cofactors to estrogen response elements (EREs) to control gene transcription. A deeper understanding of these transcriptional mechanisms may uncover therapeutic targets for ER alpha-dependent cancers. We show that BRD4 regulates ER alpha-induced gene expression by affecting elongation-associated phosphorylation of RNA polymerase II (RNAPII) and histone H2B monoubiquitination. Consistently, BRD4 activity is required for proliferation of ER+ breast and endometrial cancer cells and uterine growth in mice. Genome-wide studies revealed an enrichment of BRD4 on transcriptional start sites of active genes and a requirement of BRD4 for H2B monoubiquitination in the transcribed region of estrogen-responsive genes. Importantly, we demonstrate that BRD4 occupancy on distal EREs enriched for H3K27ac is required for recruitment and elongation of RNAPII on EREs and the production of ER alpha-dependent enhancer RNAs. These results uncover BRD4 as a central regulator of ER alpha function and potential therapeutic target."],["dc.identifier.doi","10.1016/j.celrep.2014.06.016"],["dc.identifier.isi","000341569800016"],["dc.identifier.pmid","25017071"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11372"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/32862"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.relation.issn","2211-1247"],["dc.rights","CC BY-NC-ND 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/3.0"],["dc.title","Bromodomain Protein BRD4 Is Required for Estrogen Receptor-Dependent Enhancer Activation and Gene Transcription"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","127"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nucleic Acids Research"],["dc.bibliographiccitation.lastpage","141"],["dc.bibliographiccitation.volume","45"],["dc.contributor.author","Najafova, Zeynab"],["dc.contributor.author","Tirado-Magallanes, Roberto"],["dc.contributor.author","Subramaniam, Malayannan"],["dc.contributor.author","Hossan, Tareq"],["dc.contributor.author","Schmidt, Geske"],["dc.contributor.author","Nagarajan, Sankari"],["dc.contributor.author","Baumgart, Simon J."],["dc.contributor.author","Mishra, Vivek Kumar"],["dc.contributor.author","Bedi, Upasana"],["dc.contributor.author","Hesse, Eric"],["dc.contributor.author","Knapp, Stefan"],["dc.contributor.author","Hawse, John R."],["dc.contributor.author","Johnsen, Steven A."],["dc.date.accessioned","2018-11-07T10:28:57Z"],["dc.date.available","2018-11-07T10:28:57Z"],["dc.date.issued","2017"],["dc.description.abstract","Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4."],["dc.identifier.doi","10.1093/nar/gkw826"],["dc.identifier.isi","000396575100016"],["dc.identifier.pmid","27651452"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14409"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/43538"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","1362-4962"],["dc.relation.issn","0305-1048"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0"],["dc.title","BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2018Journal Article Research Paper [["dc.bibliographiccitation.firstpage","2850"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Nucleic Acids Research"],["dc.bibliographiccitation.lastpage","2867"],["dc.bibliographiccitation.volume","46"],["dc.contributor.author","Iyer, Lavanya M"],["dc.contributor.author","Nagarajan, Sankari"],["dc.contributor.author","Woelfer, Monique"],["dc.contributor.author","Schoger, Eric"],["dc.contributor.author","Khadjeh, Sara"],["dc.contributor.author","Zafiriou, Maria Patapia"],["dc.contributor.author","Kari, Vijayalakshmi"],["dc.contributor.author","Herting, Jonas"],["dc.contributor.author","Pang, Sze Ting"],["dc.contributor.author","Weber, Tobias"],["dc.contributor.author","Rathjens, Franziska S."],["dc.contributor.author","Fischer, Thomas H."],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Hasenfuss, Gerd"],["dc.contributor.author","Noack, Claudia"],["dc.contributor.author","Johnsen, Steven A."],["dc.contributor.author","Zelarayán, Laura C."],["dc.date.accessioned","2018-04-23T11:47:57Z"],["dc.date.available","2018-04-23T11:47:57Z"],["dc.date.issued","2018"],["dc.description.abstract","Chromatin remodelling precedes transcriptional and structural changes in heart failure. A body of work suggests roles for the developmental Wnt signalling pathway in cardiac remodelling. Hitherto, there is no evidence supporting a direct role of Wnt nuclear components in regulating chromatin landscapes in this process. We show that transcriptionally active, nuclear, phosphorylated(p)Ser675-β-catenin and TCF7L2 are upregulated in diseased murine and human cardiac ventricles. We report that inducible cardiomyocytes (CM)-specific pSer675-β-catenin accumulation mimics the disease situation by triggering TCF7L2 expression. This enhances active chromatin, characterized by increased H3K27ac and TCF7L2 occupancies to cardiac developmental and remodelling genes in vivo. Accordingly, transcriptomic analysis of β-catenin stabilized hearts shows a strong recapitulation of cardiac developmental processes like cell cycling and cytoskeletal remodelling. Mechanistically, TCF7L2 co-occupies distal genomic regions with cardiac transcription factors NKX2–5 and GATA4 in stabilized-β-catenin hearts. Validation assays revealed a previously unrecognized function of GATA4 as a cardiac repressor of the TCF7L2/β-catenin complex in vivo, thereby defining a transcriptional switch controlling disease progression. Conversely, preventing β-catenin activation post-pressure-overload results in a downregulation of these novel TCF7L2-targets and rescues cardiac function. Thus, we present a novel role for TCF7L2/β-catenin in CMs-specific chromatin modulation, which could be exploited for manipulating the ubiquitous Wnt pathway."],["dc.description.sponsorship","Open-Access-Publikatinsfonds 2018"],["dc.identifier.doi","10.1093/nar/gky049"],["dc.identifier.gro","3142314"],["dc.identifier.pmid","29394407"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15089"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13447"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/201"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A11: Absolute Arrhythmie bei Vorhofflimmern - ein neuer Mechanismus, der zu einer Störung von Ca2+-Homöostase und elektrischer Stabilität in der Transition zur Herzinsuffizienz führt"],["dc.relation","SFB 1002 | C07: Kardiomyozyten Wnt/β-catenin Komplex Aktivität im pathologischen Herz-Remodeling - als gewebespezifischer therapeutischer Ansatz"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation","SFB 1002 | INF: Unterstützung der SFB 1002 Forschungsdatenintegration, -visualisierung und -nachnutzung"],["dc.relation.issn","0305-1048"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG T. Fischer"],["dc.relation.workinggroup","RG Toischer (Kardiales Remodeling)"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0"],["dc.title","A context-specific cardiac β-catenin and GATA4 interaction influences TCF7L2 occupancy and remodels chromatin driving disease progression in the adult heart"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC