Options
Schaback, Robert
Loading...
Preferred name
Schaback, Robert
Official Name
Schaback, Robert
Alternative Name
Schaback, R.
Main Affiliation
Now showing 1 - 3 of 3
2017Journal Article [["dc.bibliographiccitation.journal","IMA Journal of Numerical Analysis"],["dc.contributor.author","Davydov, Oleg"],["dc.contributor.author","Schaback, Robert"],["dc.date.accessioned","2020-12-10T18:19:17Z"],["dc.date.available","2020-12-10T18:19:17Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1093/imanum/drx076"],["dc.identifier.eissn","1464-3642"],["dc.identifier.issn","0272-4979"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75192"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Optimal stencils in Sobolev spaces"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","555"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Numerische Mathematik"],["dc.bibliographiccitation.lastpage","592"],["dc.bibliographiccitation.volume","140"],["dc.contributor.author","Davydov, Oleg"],["dc.contributor.author","Schaback, Robert"],["dc.date.accessioned","2020-12-10T14:09:54Z"],["dc.date.available","2020-12-10T14:09:54Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1007/s00211-018-0973-3"],["dc.identifier.eissn","0945-3245"],["dc.identifier.issn","0029-599X"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70596"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Minimal numerical differentiation formulas"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.firstpage","243"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Numerische Mathematik"],["dc.bibliographiccitation.lastpage","269"],["dc.bibliographiccitation.volume","132"],["dc.contributor.author","Davydov, Oleg"],["dc.contributor.author","Schaback, Robert"],["dc.date.accessioned","2018-11-07T10:18:59Z"],["dc.date.available","2018-11-07T10:18:59Z"],["dc.date.issued","2016"],["dc.description.abstract","The literature on meshless methods shows that kernel-based numerical differentiation formulae are robust and provide high accuracy at low cost. This paper analyzes the error of such formulas, using the new technique of growth functions. It allows to bypass certain technical assumptions that were needed to prove the standard error bounds on interpolants and their derivatives. Since differentiation formulas based on polynomials also have error bounds in terms of growth functions, we have a convenient way to compare kernel-based and polynomial-based formulas. It follows that kernel-based formulas are comparable in accuracy to the best possible polynomial-based formulas. A variety of examples is provided."],["dc.description.sponsorship","Alexander von Humboldt Foundation"],["dc.identifier.doi","10.1007/s00211-015-0722-9"],["dc.identifier.isi","000368065700002"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41566"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","Heidelberg"],["dc.relation.issn","0945-3245"],["dc.relation.issn","0029-599X"],["dc.title","Error bounds for kernel-based numerical differentiation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS
3 results