Now showing 1 - 10 of 19
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","16913"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Mandad, Sunit"],["dc.contributor.author","Rahman, Raza-Ur"],["dc.contributor.author","Centeno, Tonatiuh Pena"],["dc.contributor.author","Vidal, Ramon O."],["dc.contributor.author","Wildhagen, Hanna"],["dc.contributor.author","Rammner, Burkhard"],["dc.contributor.author","Keihani, Sarva"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Urban, Inga"],["dc.contributor.author","Ischebeck, Till"],["dc.contributor.author","Kirli, Koray"],["dc.contributor.author","Benito, Eva"],["dc.contributor.author","Fischer, André"],["dc.contributor.author","Yousefi, Roya Y."],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Feußner, Ivo"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Fornasiero, Eugenio F."],["dc.date.accessioned","2019-07-09T11:50:21Z"],["dc.date.available","2019-07-09T11:50:21Z"],["dc.date.issued","2018"],["dc.description.abstract","The homeostasis of the proteome depends on the tight regulation of the mRNA and protein abundances, of the translation rates, and of the protein lifetimes. Results from several studies on prokaryotes or eukaryotic cell cultures have suggested that protein homeostasis is connected to, and perhaps regulated by, the protein and the codon sequences. However, this has been little investigated for mammals in vivo. Moreover, the link between the coding sequences and one critical parameter, the protein lifetime, has remained largely unexplored, both in vivo and in vitro. We tested this in the mouse brain, and found that the percentages of amino acids and codons in the sequences could predict all of the homeostasis parameters with a precision approaching experimental measurements. A key predictive element was the wobble nucleotide. G-/C-ending codons correlated with higher protein lifetimes, protein abundances, mRNA abundances and translation rates than A-/U-ending codons. Modifying the proportions of G-/C-ending codons could tune these parameters in cell cultures, in a proof-of-principle experiment. We suggest that the coding sequences are strongly linked to protein homeostasis in vivo, albeit it still remains to be determined whether this relation is causal in nature."],["dc.identifier.doi","10.1038/s41598-018-35277-8"],["dc.identifier.pmid","30443017"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15918"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59754"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/209"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/44"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/614765/EU//NEUROMOLANATOMY"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P09: Proteinsortierung in der Synapse: Prinzipien und molekulare Organisation"],["dc.relation.issn","2045-2322"],["dc.relation.workinggroup","RG A. Fischer (Epigenetics and Systems Medicine in Neurodegenerative Diseases)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","820"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Gomes de Castro, Maria Angela"],["dc.contributor.author","Wildhagen, Hanna"],["dc.contributor.author","Sograte-Idrissi, Shama"],["dc.contributor.author","Hitzing, Christoffer"],["dc.contributor.author","Binder, Mascha"],["dc.contributor.author","Trepel, Martin"],["dc.contributor.author","Engels, Niklas"],["dc.contributor.author","Opazo, Felipe"],["dc.date.accessioned","2019-07-09T11:50:13Z"],["dc.date.available","2019-07-09T11:50:13Z"],["dc.date.issued","2019"],["dc.description.abstract","Stimulation of the B cell antigen receptor (BCR) triggers signaling pathways that promote the differentiation of B cells into plasma cells. Despite the pivotal function of BCR in B cell activation, the organization of the BCR on the surface of resting and antigen-activated B cells remains unclear. Here we show, using STED super-resolution microscopy, that IgM-containing BCRs exist predominantly as monomers and dimers in the plasma membrane of resting B cells, but form higher oligomeric clusters upon stimulation. By contrast, a chronic lymphocytic leukemia-derived BCR forms dimers and oligomers in the absence of a stimulus, but a single amino acid exchange reverts its organization to monomers in unstimulated B cells. Our super-resolution microscopy approach for quantitatively analyzing cell surface proteins may thus help reveal the nanoscale organization of immunoreceptors in various cell types."],["dc.identifier.doi","10.1038/s41467-019-08677-1"],["dc.identifier.pmid","30778055"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15884"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59725"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Differential organization of tonic and chronic B cell antigen receptors in the plasma membrane"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","7977"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Ta, Haisen"],["dc.contributor.author","Keller, Jan"],["dc.contributor.author","Haltmeier, Markus"],["dc.contributor.author","Saka, Sinem K."],["dc.contributor.author","Schmied, Juregen"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Tinnefeld, Philip"],["dc.contributor.author","Munk, Axel"],["dc.contributor.author","Hell, Stefan"],["dc.date.accessioned","2017-09-07T11:43:37Z"],["dc.date.available","2017-09-07T11:43:37Z"],["dc.date.issued","2015"],["dc.description.abstract","In fluorescence microscopy, the distribution of the emitting molecule number in space is usually obtained by dividing the measured fluorescence by that of a single emitter. However, the brightness of individual emitters may vary strongly in the sample or be inaccessible. Moreover, with increasing (super-) resolution, fewer molecules are found per pixel, making this approach unreliable. Here we map the distribution of molecules by exploiting the fact that a single molecule emits only a single photon at a time. Thus, by analysing the simultaneous arrival of multiple photons during confocal imaging, we can establish the number and local brightness of typically up to 20 molecules per confocal (diffraction sized) recording volume. Subsequent recording by stimulated emission depletion microscopy provides the distribution of the number of molecules with subdiffraction resolution. The method is applied to mapping the three-dimensional nanoscale organization of internalized transferrin receptors on human HEK293 cells."],["dc.identifier.doi","10.1038/ncomms8977"],["dc.identifier.gro","3141850"],["dc.identifier.isi","000360346900018"],["dc.identifier.pmid","26269133"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13587"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1767"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Mapping molecules in scanning far-field fluorescence nanoscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","e251"],["dc.bibliographiccitation.journal","Molecular Therapy — Nucleic Acids"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Eiden, Laura"],["dc.contributor.author","Hansen, Line"],["dc.contributor.author","Rohrbach, Falk"],["dc.contributor.author","Wengel, Jesper"],["dc.contributor.author","Kjems, Jorgen"],["dc.contributor.author","Mayer, Guenter"],["dc.date.accessioned","2018-11-07T09:51:53Z"],["dc.date.available","2018-11-07T09:51:53Z"],["dc.date.issued","2015"],["dc.description.abstract","Aptamers are valuable tools that provide great potential to develop cost-effective diagnostics and therapies in the biomedical field. Here, we report a novel DNA aptamer that folds into an unconventional G-quadruplex structure able to recognize and enter specifically into human Burkitt's lymphoma cells. We further optimized this aptamer to a highly versatile and stable minimized version. The minimized aptamer can be easily equipped with different functionalities like quantum dots, organic dyes, or even a second different aptamer domain yielding a bi-paratopic aptamer. Although the target molecule of the aptamer remains unknown, our microscopy and pharmacological studies revealed that the aptamer hijacks the clathrin-mediated endocytosis pathway for its cellular internalization. We conclude that this novel class of aptamers can be used as a modular tool to specifically deliver different cargoes into malignant cells. This work provides a thorough characterization of the aptamer and we expect that our strategy will pave the path for future therapeutic applications."],["dc.identifier.doi","10.1038/mtna.2015.25"],["dc.identifier.isi","000368911800002"],["dc.identifier.pmid","26325628"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12867"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36003"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2162-2531"],["dc.rights","CC BY-NC-SA 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-sa/4.0"],["dc.title","Modular Assembly of Cell-targeting Devices Based on an Uncommon G-quadruplex Aptamer"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","4230"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Fornasiero, Eugenio F."],["dc.contributor.author","Mandad, Sunit"],["dc.contributor.author","Wildhagen, Hanna"],["dc.contributor.author","Alevra, Mihai"],["dc.contributor.author","Rammner, Burkhard"],["dc.contributor.author","Keihani, Sarva"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Urban, Inga"],["dc.contributor.author","Ischebeck, Till"],["dc.contributor.author","Sakib, M. Sadman"],["dc.contributor.author","Fard, Maryam K."],["dc.contributor.author","Kirli, Koray"],["dc.contributor.author","Centeno, Tonatiuh Pena"],["dc.contributor.author","Vidal, Ramon O."],["dc.contributor.author","Rahman, Raza-Ur"],["dc.contributor.author","Benito, Eva"],["dc.contributor.author","Fischer, André"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Feussner, Ivo"],["dc.contributor.author","Bonn, Stefan"],["dc.contributor.author","Simons, Mikael"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.date.accessioned","2019-07-09T11:46:03Z"],["dc.date.available","2019-07-09T11:46:03Z"],["dc.date.issued","2018"],["dc.description.abstract","The turnover of brain proteins is critical for organism survival, and its perturbations are linked to pathology. Nevertheless, protein lifetimes have been difficult to obtain in vivo. They are readily measured in vitro by feeding cells with isotopically labeled amino acids, followed by mass spectrometry analyses. In vivo proteins are generated from at least two sources: labeled amino acids from the diet, and non-labeled amino acids from the degradation of pre-existing proteins. This renders measurements difficult. Here we solved this problem rigorously with a workflow that combines mouse in vivo isotopic labeling, mass spectrometry, and mathematical modeling. We also established several independent approaches to test and validate the results. This enabled us to measure the accurate lifetimes of ~3500 brain proteins. The high precision of our data provided a large set of biologically significant observations, including pathway-, organelle-, organ-, or cell-specific effects, along with a comprehensive catalog of extremely long-lived proteins (ELLPs)."],["dc.identifier.doi","10.1038/s41467-018-06519-0"],["dc.identifier.pmid","30315172"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15388"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59372"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/42"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/41"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15611 but duplicate"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/614765/EU//NEUROMOLANATOMY"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P09: Proteinsortierung in der Synapse: Prinzipien und molekulare Organisation"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A03: Dynamische Analyse der Remodellierung der extrazellulären Matrix (ECM) als Mechanismus der Synapsenorganisation und Plastizität"],["dc.relation.issn","2041-1723"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","573"],["dc.subject.ddc","612"],["dc.title","Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Gerdes, Christoph"],["dc.contributor.author","Waal, Natalia"],["dc.contributor.author","Offner, Thomas"],["dc.contributor.author","Fornasiero, Eugenio F."],["dc.contributor.author","Wender, Nora"],["dc.contributor.author","Verbarg, Hannes"],["dc.contributor.author","Manzini, Ivan"],["dc.contributor.author","Trenkwalder, Claudia"],["dc.contributor.author","Mollenhauer, Brit"],["dc.contributor.author","Strohäker, Timo"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Becker, Stefan"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Basmanav, Fitnat Buket"],["dc.contributor.author","Opazo, Felipe"],["dc.date.accessioned","2021-04-14T08:25:49Z"],["dc.date.available","2021-04-14T08:25:49Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41467-020-16575-0"],["dc.identifier.pmid","32483166"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17434"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81740"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/112"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/71"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A03: Dynamische Analyse der Remodellierung der extrazellulären Matrix (ECM) als Mechanismus der Synapsenorganisation und Plastizität"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","A nanobody-based fluorescent reporter reveals human α-synuclein in the cell cytosol"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2020Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","10226"],["dc.bibliographiccitation.issue","18"],["dc.bibliographiccitation.journal","Nanoscale"],["dc.bibliographiccitation.lastpage","10239"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Sograte-Idrissi, Shama"],["dc.contributor.author","Schlichthaerle, Thomas"],["dc.contributor.author","Duque-Afonso, Carlos J."],["dc.contributor.author","Alevra, Mihai"],["dc.contributor.author","Strauss, Sebastian"],["dc.contributor.author","Moser, Tobias"],["dc.contributor.author","Jungmann, Ralf"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Opazo, Felipe"],["dc.date.accessioned","2021-04-14T08:26:44Z"],["dc.date.available","2021-04-14T08:26:44Z"],["dc.date.issued","2020"],["dc.description.abstract","A standard procedure to study cellular elements is via immunostaining followed by optical imaging. This methodology typically requires target-specific primary antibodies (1.Abs), which are revealed by secondary antibodies (2.Abs). Unfortunately, the antibody bivalency, polyclonality, and large size can result in a series of artifacts. Alternatively, small, monovalent probes, such as single-domain antibodies (nanobodies) have been suggested to minimize these limitations. The discovery and validation of nanobodies against specific targets are challenging, thus only a minimal amount of them are currently available. Here, we used STED, DNA-PAINT, and light-sheet microscopy, to demonstrate that secondary nanobodies (1) increase localization accuracy compared to 2.Abs; (2) allow direct pre-mixing with 1.Abs before staining, reducing experimental time, and enabling the use of multiple 1.Abs from the same species; (3) penetrate thick tissues more efficiently; and (4) avoid probe-induced clustering of target molecules observed with conventional 2.Abs in living or poorly fixed samples. Altogether, we show how secondary nanobodies are a valuable alternative to 2.Abs."],["dc.identifier.doi","10.1039/d0nr00227e"],["dc.identifier.pmid","32356544"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82054"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/185"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","2040-3372"],["dc.relation.haserratum","/handle/2/81970"],["dc.relation.issn","2040-3364"],["dc.relation.workinggroup","RG Moser (Molecular Anatomy, Physiology and Pathology of Sound Encoding)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","CC BY 3.0"],["dc.title","Circumvention of common labelling artefacts using secondary nanobodies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","7933"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Mikhaylova, Marina"],["dc.contributor.author","Cloin, Bas M. C."],["dc.contributor.author","Finan, Kieran"],["dc.contributor.author","van den Berg, Robert"],["dc.contributor.author","Teeuw, Jalmar"],["dc.contributor.author","Kijanka, Marta M."],["dc.contributor.author","Sokolowski, Mikolaj"],["dc.contributor.author","Katrukha, Eugene A."],["dc.contributor.author","Maidorn, Manuel"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Moutel, Sandrine"],["dc.contributor.author","Vantard, Marylin"],["dc.contributor.author","Perez, Frank"],["dc.contributor.author","Henegouwen, Paul M. P. van Bergen En"],["dc.contributor.author","Hoogenraad, Casper C."],["dc.contributor.author","Ewers, Helge"],["dc.contributor.author","Kapitein, Lukas C."],["dc.date.accessioned","2018-11-07T09:53:44Z"],["dc.date.available","2018-11-07T09:53:44Z"],["dc.date.issued","2015"],["dc.description.abstract","Microtubules are hollow biopolymers of 25-nm diameter and are key constituents of the cytoskeleton. In neurons, microtubules are organized differently between axons and dendrites, but their precise organization in different compartments is not completely understood. Super-resolution microscopy techniques can detect specific structures at an increased resolution, but the narrow spacing between neuronal microtubules poses challenges because most existing labelling strategies increase the effective microtubule diameter by 20-40 nm and will thereby blend neighbouring microtubules into one structure. Here we develop single-chain antibody fragments (nanobodies) against tubulin to achieve super-resolution imaging of microtubules with a decreased apparent diameter. To test the resolving power of these novel probes, we generate microtubule bundles with a known spacing of 50-70 nm and successfully resolve individual microtubules. Individual bundled microtubules can also be resolved in different mammalian cells, including hippocampal neurons, allowing novel insights into fundamental mechanisms of microtubule organization in cell-and neurobiology."],["dc.identifier.doi","10.1038/ncomms8933"],["dc.identifier.isi","000360346100001"],["dc.identifier.pmid","26260773"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/12262"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36388"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Resolving bundled microtubules using anti-tubulin nanobodies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","48"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Cells"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Sograte-Idrissi, Shama"],["dc.contributor.author","Oleksiievets, Nazar"],["dc.contributor.author","Isbaner, Sebastian"],["dc.contributor.author","Eggert Martínez, Mariana"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Tsukanov, Roman"],["dc.contributor.author","Opazo, Felipe"],["dc.date.accessioned","2020-12-10T18:46:58Z"],["dc.date.available","2020-12-10T18:46:58Z"],["dc.date.issued","2019"],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.3390/cells8010048"],["dc.identifier.eissn","2073-4409"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78601"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.publisher","MDPI"],["dc.relation.eissn","2073-4409"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Nanobody Detection of Standard Fluorescent Proteins Enables Multi-Target DNA-PAINT with High Resolution and Minimal Displacement Errors"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1083"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of Analytical Atomic Spectrometry"],["dc.bibliographiccitation.lastpage","1087"],["dc.bibliographiccitation.volume","34"],["dc.contributor.author","Kabatas, Selda"],["dc.contributor.author","Agüi-Gonzalez, Paola"],["dc.contributor.author","Hinrichs, Rena"],["dc.contributor.author","Jähne, Sebastian"],["dc.contributor.author","Opazo, Felipe"],["dc.contributor.author","Diederichsen, Ulf"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Phan, Nhu T. N."],["dc.date.accessioned","2020-12-10T18:11:29Z"],["dc.date.available","2020-12-10T18:11:29Z"],["dc.date.issued","2019"],["dc.description.abstract","Molecular imaging of targeted large biomolecules has been restricted in SIMS due to the limited number of probes containing SIMSdetectable isotopes.We introduce here new 19F-containingmolecules that can be conjugated in a site-specificmanner to nanobodies able to recognize fluorescent proteins (FPs) or mouse immunoglobulins (Igs). In this work, we demonstrate that it is possible to use the 19F-nanobodies to reveal the location of several cellular proteins previously tagged with FPs or Igs. This enables specific bio-imaging in SIMS for a vast repertoire of biomolecules, offering new opportunities to study specific structural and functional molecular interactions in biological specimens."],["dc.identifier.doi","10.1039/C9JA00117D"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16452"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74028"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/24"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/16278 but duplicate"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | B01: Der Verteilung struktureller Lipide in synaptischen Membranen"],["dc.relation.eissn","1364-5544"],["dc.relation.issn","0267-9477"],["dc.relation.issn","1364-5544"],["dc.relation.workinggroup","RG Phan"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","CC BY 3.0"],["dc.rights.access","openAccess"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.subject.ddc","610"],["dc.title","Fluorinated nanobodies for targeted molecular imaging of biological samples using nanoscale secondary ion mass spectrometry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI