Now showing 1 - 4 of 4
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","135"],["dc.bibliographiccitation.journal","Neurobiology of Disease"],["dc.bibliographiccitation.lastpage","143"],["dc.bibliographiccitation.volume","62"],["dc.contributor.author","Agbemenyah, Hope Yao"],["dc.contributor.author","Agis-Balboa, Roberto Carlos"],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Delalle, Ivana"],["dc.contributor.author","Fischer, Andre"],["dc.date.accessioned","2017-09-07T11:46:53Z"],["dc.date.available","2017-09-07T11:46:53Z"],["dc.date.issued","2014"],["dc.description.abstract","Alzheimer's disease (AD) is the most common form of dementia in the elderly but effective therapeutic strategies to treat AD are not yet available. This is also due to the fact that the pathological mechanisms that drive the pathogenesis of sporadic AD are still not sufficiently understood and may differ on the individual level. Several risk factors such as altered insulin-like peptide (ILP) signaling have been linked to AD and modulating the ILP system has been discussed as a potential therapeutic avenue. Here we show that insulin-like growth factor binding protein 7 (IGFBP7), a protein that attenuates the function of ILPs, is up-regulated in the brains of AD patients and in a mouse model for AD via a process that involves altered DNA-methylation and coincides with decreased ILP signaling. Mimicking the AD-situation in wild type mice, by increasing hippocampal IGFBP7 levels leads to impaired memory consolidation. Consistently, inhibiting IGFBP7 function in mice that develop AD-like memory impairment reinstates associative learning behavior. These data suggest that IGFBP7 is a critical regulator of memory consolidation and might be used as a biomarker for AD. Targeting IGFBP7 could be a novel therapeutic avenue for the treatment of AD patients."],["dc.identifier.doi","10.1016/j.nbd.2013.09.011"],["dc.identifier.gro","3142193"],["dc.identifier.isi","000330553600013"],["dc.identifier.pmid","24075854"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5566"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1095-953X"],["dc.relation.issn","0969-9961"],["dc.title","Insulin growth factor binding protein 7 is a novel target to treat dementia"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017-12-05Journal Article
    [["dc.bibliographiccitation.firstpage","32"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","EMBO molecular medicine"],["dc.bibliographiccitation.lastpage","47"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Martinez-Hernandez, Ana"],["dc.contributor.author","Urbanke, Hendrik"],["dc.contributor.author","Gillman, Alan L."],["dc.contributor.author","Lee, Joon"],["dc.contributor.author","Ryazanov, Sergey"],["dc.contributor.author","Agbemenyah, Hope Y."],["dc.contributor.author","Benito, Eva"],["dc.contributor.author","Jain, Gaurav"],["dc.contributor.author","Kaurani, Lalit"],["dc.contributor.author","Grigorian, Gayane"],["dc.contributor.author","Leonov, Andrei"],["dc.contributor.author","Rezaei-Ghaleh, Nasrollah"],["dc.contributor.author","Wilken, Petra"],["dc.contributor.author","Teran Arce, Fernando"],["dc.contributor.author","Wagner, Jens"],["dc.contributor.author","Fuhrman, Martin"],["dc.contributor.author","Caruana, Mario"],["dc.contributor.author","Camilleri, Angelique"],["dc.contributor.author","Vassallo, Neville"],["dc.contributor.author","Zweckstetter, Markus"],["dc.contributor.author","Benz, Roland"],["dc.contributor.author","Giese, Armin"],["dc.contributor.author","Schneider, Anja"],["dc.contributor.author","Korte, Martin"],["dc.contributor.author","Lal, Ratnesh"],["dc.contributor.author","Griesinger, Christian"],["dc.contributor.author","Eichele, Gregor"],["dc.contributor.author","Fischer, Andre"],["dc.date.accessioned","2018-01-09T14:58:18Z"],["dc.date.available","2018-01-09T14:58:18Z"],["dc.date.issued","2017-12-05"],["dc.description.abstract","Alzheimer's disease is a devastating neurodegenerative disease eventually leading to dementia. An effective treatment does not yet exist. Here we show that oral application of the compound anle138b restores hippocampal synaptic and transcriptional plasticity as well as spatial memory in a mouse model for Alzheimer's disease, when given orally before or after the onset of pathology. At the mechanistic level, we provide evidence that anle138b blocks the activity of conducting Aβ pores without changing the membrane embedded Aβ-oligomer structure. In conclusion, our data suggest that anle138b is a novel and promising compound to treat AD-related pathology that should be investigated further."],["dc.identifier.doi","10.15252/emmm.201707825"],["dc.identifier.pmid","29208638"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15064"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11613"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.eissn","1757-4684"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The diphenylpyrazole compound anle138b blocks Aβ channels and rescues disease phenotypes in a mouse model for amyloid pathology"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","4071"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","4083"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Agis-Balboa, Roberto Carlos"],["dc.contributor.author","Arcos-Diaz, Dario"],["dc.contributor.author","Wittnam, Jessica"],["dc.contributor.author","Govindarajan, Nambirajan"],["dc.contributor.author","Blom, Kim"],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Haladyniak, Ulla"],["dc.contributor.author","Agbemenyah, Hope Yao"],["dc.contributor.author","Zovoilis, Athanasios"],["dc.contributor.author","Salinas-Riester, Gabriela"],["dc.contributor.author","Opitz, Lennart"],["dc.contributor.author","Sananbenesi, Farahnaz"],["dc.contributor.author","Fischer, Andre"],["dc.date.accessioned","2017-09-07T11:43:23Z"],["dc.date.available","2017-09-07T11:43:23Z"],["dc.date.issued","2011"],["dc.description.abstract","Extinction learning refers to the phenomenon that a previously learned response to an environmental stimulus, for example, the expression of an aversive behaviour upon exposure to a specific context, is reduced when the stimulus is repeatedly presented in the absence of a previously paired aversive event. Extinction of fear memories has been implicated with the treatment of anxiety disease but the molecular processes that underlie fear extinction are only beginning to emerge. Here, we show that fear extinction initiates upregulation of hippocampal insulin-growth factor 2 (Igf2) and downregulation of insulin-growth factor binding protein 7 (Igfbp7). In line with this observation, we demonstrate that IGF2 facilitates fear extinction, while IGFBP7 impairs fear extinction in an IGF2-dependent manner. Furthermore, we identify one cellular substrate of altered IGF2 signalling during fear extinction. To this end, we show that fear extinctioninduced IGF2/IGFBP7 signalling promotes the survival of 17-19-day-old newborn hippocampal neurons. In conclusion, our data suggest that therapeutic strategies that enhance IGF2 signalling and adult neurogenesis might be suitable to treat disease linked to excessive fear memory."],["dc.identifier.doi","10.1038/emboj.2011.293"],["dc.identifier.gro","3142650"],["dc.identifier.isi","000295967300019"],["dc.identifier.pmid","21873981"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0261-4189"],["dc.title","A hippocampal insulin-growth factor 2 pathway regulates the extinction of fear memories"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","4299"],["dc.bibliographiccitation.issue","20"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","4308"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Zovoilis, Athanasios"],["dc.contributor.author","Agbemenyah, Hope Yao"],["dc.contributor.author","Agis-Balboa, Roberto Carlos"],["dc.contributor.author","Stilling, Roman Manuel"],["dc.contributor.author","Edbauer, Dieter"],["dc.contributor.author","Rao, Pooja"],["dc.contributor.author","Farinelli, Laurent"],["dc.contributor.author","Delalle, Ivana"],["dc.contributor.author","Schmitt, Andrea"],["dc.contributor.author","Falkai, Peter"],["dc.contributor.author","Bahari-Javan, Sanaz"],["dc.contributor.author","Burkhardt, Susanne"],["dc.contributor.author","Sananbenesi, Farahnaz"],["dc.contributor.author","Fischer, Andre"],["dc.date.accessioned","2017-09-07T11:43:21Z"],["dc.date.available","2017-09-07T11:43:21Z"],["dc.date.issued","2011"],["dc.description.abstract","MicroRNAs are key regulators of transcriptome plasticity and have been implicated with the pathogenesis of brain diseases. Here, we employed massive parallel sequencing and provide, at an unprecedented depth, the complete and quantitative miRNAome of the mouse hippocampus, the prime target of neurodegenerative diseases such as Alzheimer's disease (AD). Using integrative genetics, we identify miR-34c as a negative constraint of memory consolidation and show that miR-34c levels are elevated in the hippocampus of AD patients and corresponding mouse models. In line with this, targeting miR-34 seed rescues learning ability in these mouse models. Our data suggest that miR-34c could be a marker for the onset of cognitive disturbances linked to AD and indicate that targeting miR-34c could be a suitable therapy."],["dc.identifier.doi","10.1038/emboj.2011.327"],["dc.identifier.gro","3142641"],["dc.identifier.isi","000296715800017"],["dc.identifier.pmid","21946562"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/67"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0261-4189"],["dc.title","MicroRNA-34c is a novel target to treat dementias"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS