Options
Vettel, Christiane
Loading...
Preferred name
Vettel, Christiane
Official Name
Vettel, Christiane
Alternative Name
Vettel, C.
Now showing 1 - 10 of 13
2012Journal Article [["dc.bibliographiccitation.firstpage","165"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Journal of Molecular and Cellular Cardiology"],["dc.bibliographiccitation.lastpage","175"],["dc.bibliographiccitation.volume","53"],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Wittig, Karola"],["dc.contributor.author","Vogt, Andreas"],["dc.contributor.author","Wuertz, Christina M."],["dc.contributor.author","El-Armouche, Ali"],["dc.contributor.author","Lutz, Susanne"],["dc.contributor.author","Wieland, Thomas"],["dc.date.accessioned","2018-11-07T09:07:59Z"],["dc.date.available","2018-11-07T09:07:59Z"],["dc.date.issued","2012"],["dc.description.abstract","Activation of alpha(1)-adrenoceptors (alpha(1)-AR) by high catecholamine levels, e.g. in heart failure, is thought to be a driving force of cardiac hypertrophy. In this context several downstream mediators and cascades have been identified to potentially play a role in cardiomyocyte hypertrophy. One of these proteins is the monomeric G protein Rac1. However, until now it is unclear how this essential G protein is activated by alpha(1)-AR agonists and what are the downstream targets inducing cellular growth. By using protein-based as well as pharmacological inhibitors and the shRNA technique, we demonstrate that in neonatal rat cardiomyocytes (NRCM) Rac1 is activated via a cascade involving the alpha(1A)-AR subtype, G(i)beta gamma, the phosphoinositide-3'-kinase and the guanine nucleotide exchange factor Tiam1. We further demonstrate that this signaling induces an increase in protein synthesis, cell size and atrial natriuretic peptide expression. We identified the p21-activated kinase 2 (PAK2) as a downstream effector of Rac1 and were able to link this cascade to the activation of the pro-hypertrophic kinases ERK1/2 and p90RSK. Our data thus reveal a prominent role of the alpha(1A)-AR/G(i)beta gamma/Tiam1-mediated activation of Rac1 and its effector PAK2 in the induction of hypertrophy in NRCM. (C) 2012 Elsevier Ltd. All rights reserved."],["dc.identifier.doi","10.1016/j.yjmcc.2012.04.015"],["dc.identifier.isi","000306451600003"],["dc.identifier.pmid","22564263"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25922"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Academic Press Ltd- Elsevier Science Ltd"],["dc.relation.issn","1095-8584"],["dc.relation.issn","0022-2828"],["dc.title","A novel player in cellular hypertrophy: G(i)beta gamma/PI3K-dependent activation of the RacGEF TIAM-1 is required for alpha(1)-adrenoceptor induced hypertrophy in neonatal rat cardiomyocytes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.firstpage","599a"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","110"],["dc.contributor.author","Lindner, Marta"],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Dewenter, Matthias"],["dc.contributor.author","Riedel, Merle"],["dc.contributor.author","Lämmle, Simon"],["dc.contributor.author","Mason, Fleur"],["dc.contributor.author","Meinecke, Simon"],["dc.contributor.author","Wieland, Thomas"],["dc.contributor.author","Mehel, Hind"],["dc.contributor.author","Karam, Sarah"],["dc.contributor.author","Lechene, Patrick"],["dc.contributor.author","Leroy, Jerome"],["dc.contributor.author","Vandecasteele, Gregoire"],["dc.contributor.author","El-Armouche, Ali"],["dc.contributor.author","Fischmeister, Rodolphe"],["dc.date.accessioned","2020-12-10T14:22:42Z"],["dc.date.available","2020-12-10T14:22:42Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1016/j.bpj.2015.11.3199"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71701"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Cardiac-Specific Overexpression of Phosphodiesterase 2 (PDE2) in Mouse is Cardioprotective"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","39"],["dc.bibliographiccitation.journal","Journal of Molecular and Cellular Cardiology"],["dc.bibliographiccitation.lastpage","54"],["dc.bibliographiccitation.volume","88"],["dc.contributor.author","Ongherth, Anita"],["dc.contributor.author","Pasch, Sebastian"],["dc.contributor.author","Wuertz, Christina M."],["dc.contributor.author","Nowak, Karolin"],["dc.contributor.author","Kittana, Naim"],["dc.contributor.author","Weis, Cleo A."],["dc.contributor.author","Jatho, Aline"],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Toischer, Karl"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Wieland, Thomas"],["dc.contributor.author","Lutz, Susanne"],["dc.date.accessioned","2017-09-07T11:43:27Z"],["dc.date.available","2017-09-07T11:43:27Z"],["dc.date.issued","2015"],["dc.description.abstract","Cardiac remodeling, a hallmark of heart disease, is associated with intense auto- and paracrine signaling leading to cardiac fibrosis. We hypothesized that the specific mediator of G(q/11)-dependent RhoA activation p63RhoGEF, which is expressed in cardiac fibroblasts, plays a role in the underlying processes. We could show that p63RhoGEF is up-regulated in mouse hearts subjected to transverse aortic constriction (TAC). In an engineered heart muscle model (EHM), p63RhoGEF expression in cardiac fibroblasts increased resting and twitch tensions, and the dominant negative p63 Delta N decreased both. In an engineered connective tissue model (ECT), p63RhoGEF increased tissue stiffness and its knockdown as well as p63 Delta N reduced stiffness. In 2D cultures of neonatal rat cardiac fibroblasts, p63RhoGEF regulated the angiotensin II (Ang II)-dependent RhoA activation, the activation of the serum response factor, and the expression and secretion of the connective tissue growth factor (CTGF). All these processes were inhibited by the knockdown of p63RhoGEF or by p63 Delta N likely based on their negative influence on the actin cytoskeleton. Moreover, we show that p63RhoGEF also regulates CTGF in engineered tissues and correlates with it in the TAC model. Finally, confocal studies revealed a closely related localization of p63RhoGEF and CTGF in the trans-Golgi network. (C) 2015 Published by Elsevier Ltd."],["dc.identifier.doi","10.1016/j.yjmcc.2015.09.009"],["dc.identifier.gro","3141795"],["dc.identifier.isi","000365059300004"],["dc.identifier.pmid","26392029"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1157"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/117"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | C02: RhoGTPasen und ihre Bedeutung für die Last-abhängige Myokardfibrose"],["dc.relation","SFB 1002 | C04: Fibroblasten-Kardiomyozyten Interaktion im gesunden und erkrankten Herzen: Mechanismen und therapeutische Interventionen bei Kardiofibroblastopathien"],["dc.relation.eissn","1095-8584"],["dc.relation.issn","0022-2828"],["dc.relation.workinggroup","RG Hasenfuß (Transition zur Herzinsuffizienz)"],["dc.relation.workinggroup","RG Lutz (G Protein-Coupled Receptor Mediated Signaling)"],["dc.relation.workinggroup","RG Tiburcy (Stem Cell Disease Modeling)"],["dc.relation.workinggroup","RG Toischer (Kardiales Remodeling)"],["dc.relation.workinggroup","RG Zimmermann (Engineered Human Myocardium)"],["dc.title","p63RhoGEF regulates auto- and paracrine signaling in cardiac fibroblasts"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article [["dc.bibliographiccitation.firstpage","2478"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Cellular Signalling"],["dc.bibliographiccitation.lastpage","2484"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Del Galdo, Sabrina"],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Heringdorf, Dagmar Meyer Zu"],["dc.contributor.author","Wieland, Thomas"],["dc.date.accessioned","2018-11-07T09:17:02Z"],["dc.date.available","2018-11-07T09:17:02Z"],["dc.date.issued","2013"],["dc.description.abstract","Sphingosine-1-phosphate (SIP) is a multifunctional phospholipid inducing a variety of cellular responses in endothelial cells (EC). SW responses are mediated by five G protein coupled receptors of which three types (S1P(1)R-S1P(3)R) have been described to be of importance in vascular endothelial cells (EC). Whereas the S1P(1)R regulates endothelial barrier function by coupling to G alpha(i) and the monomeric GTPase Rac1, the signaling pathways involved in the S1P-induced regulation of angiogenesis are ill defined. We therefore studied the sprouting of human umbilical vein EC (HUVEC) in vitro and analyzed the activation of the RhoGTPases RhoA and RhoC. Physiological relevant concentrations of S1P (100-300 nM) induce a moderate activation of RhoA and RhoC. Inhibition or siRNA-mediated depletion of the S1P(2)R preferentially decreased the activation of RhoC Both manipulations caused an increase of sprouting in a spheroid based in vitro sprouting assay. Interestingly, a similar increase in sprouting was detected after effective siRNA-mediated knockdown of RhoC. In contrast, the depletion of RhoA had no influence on sprouting. Furthermore, suppression of the activity of G proteins of the G alpha(12/13) subfamily by adenoviral overexpression of the regulator of G protein signaling domain of LSC as well as siRNA-mediated knockdown of the Rho specific guanine nucleotide exchange factor leukemia associated RhoGEF (LARG) inhibited the S1P-induced activation of RhoC and concomitantly increased sprouting of HUVEC with similar efficacy. We conclude that the angiogenic sprouting of EC is suppressed via the S1P(2)R subtype. Thus, the increase in basal sprouting can be attributed to blocking of the inhibitory action of autocrine SIP stimulating the SiP2R. This inhibitory pathway involves the activation of RhoC via G alpha(12/13) and LARG, while the simultaneously occurring activation of RhoA is apparently dispensable here. (C) 2013 Elsevier Inc. All rights reserved."],["dc.identifier.doi","10.1016/j.cellsig.2013.08.017"],["dc.identifier.isi","000328179800014"],["dc.identifier.pmid","23993968"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/28068"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Inc"],["dc.relation.issn","1873-3913"],["dc.relation.issn","0898-6568"],["dc.title","The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e003840"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Circulation: Heart Failure"],["dc.bibliographiccitation.lastpage","9"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Dewenter, Matthias"],["dc.contributor.author","Neef, Stefan"],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Lämmle, Simon"],["dc.contributor.author","Beushausen, Christina"],["dc.contributor.author","Zelarayan, Laura C."],["dc.contributor.author","Katz, Sylvia"],["dc.contributor.author","von der Lieth, Albert"],["dc.contributor.author","Meyer-Roxlau, Stefanie"],["dc.contributor.author","Weber, Silvio"],["dc.contributor.author","Wieland, Thomas"],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Backs, Johannes"],["dc.contributor.author","Brown, Joan H."],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","El-Armouche, Ali"],["dc.date.accessioned","2020-12-10T18:37:57Z"],["dc.date.available","2020-12-10T18:37:57Z"],["dc.date.issued","2017"],["dc.description.abstract","Background— Considerable evidence suggests that calcium/calmodulin-dependent protein kinase II (CaMKII) overactivity plays a crucial role in the pathophysiology of heart failure (HF), a condition characterized by excessive β-adrenoceptor (β-AR) stimulation. Recent studies indicate a significant cross talk between β-AR signaling and CaMKII activation presenting CaMKII as a possible downstream mediator of detrimental β-AR signaling in HF. In this study, we investigated the effect of chronic β-AR blocker treatment on CaMKII activity in human and experimental HF. Methods and Results— Immunoblot analysis of myocardium from end-stage HF patients (n=12) and non-HF subjects undergoing cardiac surgery (n=12) treated with β-AR blockers revealed no difference in CaMKII activity when compared with non–β-AR blocker–treated patients. CaMKII activity was judged by analysis of CaMKII expression, autophosphorylation, and oxidation and by investigating the phosphorylation status of CaMKII downstream targets. To further evaluate these findings, CaMKIIδC transgenic mice were treated with the β1-AR blocker metoprolol (270 mg/kg d). Metoprolol significantly reduced transgene-associated mortality (n≥29; P<0.001), attenuated the development of cardiac hypertrophy (−14±6% heart weight/tibia length; P<0.05), and strongly reduced ventricular arrhythmias (−70±22% premature ventricular contractions; P<0.05). On a molecular level, metoprolol expectedly decreased protein kinase A–dependent phospholamban and ryanodine receptor 2 phosphorylation (−42±9% for P-phospholamban-S16 and −22±7% for P-ryanodine receptor 2-S2808; P<0.05). However, this was paralled neither by a reduction in CaMKII autophosphorylation, oxidation, and substrate binding nor a change in the phosphorylation of CaMKII downstream target proteins (n≥11). The lack of CaMKII modulation by β-AR blocker treatment was confirmed in healthy wild-type mice receiving metoprolol. Conclusions— Chronic β-AR blocker therapy in patients and in a mouse model of CaMKII-induced HF is not associated with a change in CaMKII activity. Thus, our data suggest that the molecular effects of β-AR blockers are not based on a modulation of CaMKII. Directly targeting CaMKII may, therefore, further improve HF therapy in addition to β-AR blockade."],["dc.identifier.doi","10.1161/CIRCHEARTFAILURE.117.003840"],["dc.identifier.pmid","28487342"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77149"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/171"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A02: Bedeutung des Phosphatase-Inhibitors-1 für die SR-spezifische Modulation der Beta- adrenozeptor-Signalkaskade"],["dc.relation","SFB 1002 | A03: Bedeutung CaMKII-abhängiger Mechanismen für die Arrhythmogenese bei Herzinsuffizienz"],["dc.relation.issn","1941-3289"],["dc.relation.issn","1941-3297"],["dc.relation.workinggroup","RG El-Armouche"],["dc.relation.workinggroup","RG L. Maier (Experimentelle Kardiologie)"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.relation.workinggroup","RG Zelarayán-Behrend (Developmental Pharmacology)"],["dc.title","Calcium/Calmodulin-Dependent Protein Kinase II Activity Persists During Chronic β-Adrenoceptor Blockade in Experimental and Human Heart Failure"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article [["dc.bibliographiccitation.artnumber","15"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Basic Research in Cardiology"],["dc.bibliographiccitation.volume","117"],["dc.contributor.author","Dewenter, Matthias"],["dc.contributor.author","Pan, Jianyuan"],["dc.contributor.author","Knödler, Laura"],["dc.contributor.author","Tzschöckel, Niklas"],["dc.contributor.author","Henrich, Julian"],["dc.contributor.author","Cordero, Julio"],["dc.contributor.author","Dobreva, Gergana"],["dc.contributor.author","Lutz, Susanne"],["dc.contributor.author","Backs, Johannes"],["dc.contributor.author","Wieland, Thomas"],["dc.contributor.author","Vettel, Christiane"],["dc.date.accessioned","2022-04-01T10:01:09Z"],["dc.date.available","2022-04-01T10:01:09Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract Hyperactivity of the sympathetic nervous system is a major driver of cardiac remodeling, exerting its effects through both α-, and β-adrenoceptors (α-, β-ARs). As the relative contribution of subtype α 1 -AR to cardiac stress responses remains poorly investigated, we subjected mice to either subcutaneous perfusion with the β-AR agonist isoprenaline (ISO, 30 mg/kg × day) or to a combination of ISO and the stable α 1 -AR agonist phenylephrine (ISO/PE, 30 mg/kg × day each). Telemetry analysis revealed similar hemodynamic responses under both ISO and ISO/PE treatment i.e., permanently increased heart rates and only transient decreases in mean blood pressure during the first 24 h. Echocardiography and single cell analysis after 1 week of exposure showed that ISO/PE-, but not ISO-treated animals established α 1 -AR-mediated inotropic responsiveness to acute adrenergic stimulation. Morphologically, additional PE perfusion limited concentric cardiomyocyte growth and enhanced cardiac collagen deposition during 7 days of treatment. Time-course analysis demonstrated a diverging development in transcriptional patterns at day 4 of treatment i.e., increased expression of selected marker genes Xirp2, Nppa, Tgfb1, Col1a1, Postn under chronic ISO/PE treatment which was either less pronounced or absent in the ISO group. Transcriptome analyses at day 4 via RNA sequencing demonstrated that additional PE treatment caused a marked upregulation of genes allocated to extracellular matrix and fiber organization along with a more pronounced downregulation of genes involved in metabolic processes, muscle adaptation and cardiac electrophysiology. Consistently, transcriptome changes under ISO/PE challenge more effectively recapitulated early transcriptional alterations in pressure overload-induced experimental heart failure and in human hypertrophic cardiomyopathy."],["dc.identifier.doi","10.1007/s00395-022-00920-z"],["dc.identifier.pii","920"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/105612"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-530"],["dc.relation.eissn","1435-1803"],["dc.relation.issn","0300-8428"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Chronic isoprenaline/phenylephrine vs. exclusive isoprenaline stimulation in mice: critical contribution of alpha1-adrenoceptors to early cardiac stress responses"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article Research Paper [["dc.bibliographiccitation.firstpage","120"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Circulation Research"],["dc.bibliographiccitation.lastpage","132"],["dc.bibliographiccitation.volume","120"],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Lindner, Marta"],["dc.contributor.author","Dewenter, Matthias"],["dc.contributor.author","Lorenz, Kristina"],["dc.contributor.author","Schanbacher, Constanze"],["dc.contributor.author","Riedel, Merle"],["dc.contributor.author","Lämmle, Simon"],["dc.contributor.author","Meinecke, Simone"],["dc.contributor.author","Mason, Fleur E."],["dc.contributor.author","Sossalla, Samuel"],["dc.contributor.author","Geerts, Andreas"],["dc.contributor.author","Hoffmann, Michael"],["dc.contributor.author","Wunder, Frank"],["dc.contributor.author","Brunner, Fabian J."],["dc.contributor.author","Wieland, Thomas"],["dc.contributor.author","Mehel, Hind"],["dc.contributor.author","Karam, Sarah"],["dc.contributor.author","Lechêne, Patrick"],["dc.contributor.author","Leroy, Jérôme"],["dc.contributor.author","Vandecasteele, Grégoire"],["dc.contributor.author","Wagner, Michael"],["dc.contributor.author","Fischmeister, Rodolphe"],["dc.contributor.author","El-Armouche, Ali"],["dc.date.accessioned","2020-12-10T18:37:59Z"],["dc.date.available","2020-12-10T18:37:59Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1161/CIRCRESAHA.116.310069"],["dc.identifier.pmid","27799254"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77159"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/309"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A02: Bedeutung des Phosphatase-Inhibitors-1 für die SR-spezifische Modulation der Beta- adrenozeptor-Signalkaskade"],["dc.relation.workinggroup","RG El-Armouche"],["dc.relation.workinggroup","RG Sossalla (Kardiovaskuläre experimentelle Elektrophysiologie und Bildgebung)"],["dc.title","Phosphodiesterase 2 Protects Against Catecholamine-Induced Arrhythmia and Preserves Contractile Function After Myocardial Infarction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2015Conference Abstract [["dc.bibliographiccitation.journal","Naunyn-Schmiedeberg s Archives of Pharmacology"],["dc.bibliographiccitation.volume","388"],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Dewenter, Matthias"],["dc.contributor.author","Linder, M."],["dc.contributor.author","Riedel, Michael"],["dc.contributor.author","Laemmle, Simon"],["dc.contributor.author","Mason, F."],["dc.contributor.author","Meinecke, S."],["dc.contributor.author","Wieland, Thomas"],["dc.contributor.author","Vandecasteele, Gregoire"],["dc.contributor.author","Geerts, A."],["dc.contributor.author","Wunderlich, F. Thomas"],["dc.contributor.author","Sossalla, Samuel T."],["dc.contributor.author","Fischmeister, Rodolphe"],["dc.contributor.author","El-Armouche, Ali"],["dc.date.accessioned","2018-11-07T10:01:10Z"],["dc.date.available","2018-11-07T10:01:10Z"],["dc.date.issued","2015"],["dc.format.extent","S42"],["dc.identifier.isi","000359539100167"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/37959"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.relation.conference","81st Annual Meeting of the Deutsche-Gesellschaft-fur-Experimentelle-und-Klinische-Pharmakologie-und Toxikologie-e-V"],["dc.relation.eventlocation","Kiel, GERMANY"],["dc.relation.issn","1432-1912"],["dc.relation.issn","0028-1298"],["dc.title","Phosphodiesterase 2 regulates resting heart rate and protects against arrhythmias and beta-adrenergic overstimulation"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2011Conference Abstract [["dc.bibliographiccitation.journal","Naunyn-Schmiedeberg s Archives of Pharmacology"],["dc.bibliographiccitation.volume","383"],["dc.contributor.author","Wuertz, Christina"],["dc.contributor.author","Weis, C.-A."],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Nowak, K."],["dc.contributor.author","Otte, K."],["dc.contributor.author","Ewens, S."],["dc.contributor.author","Tiburcy, Malte"],["dc.contributor.author","Schubert, P."],["dc.contributor.author","Zimmermann, Wolfram-Hubertus"],["dc.contributor.author","Wieland, Thomas"],["dc.contributor.author","Lutz, S."],["dc.date.accessioned","2018-11-07T08:58:30Z"],["dc.date.available","2018-11-07T08:58:30Z"],["dc.date.issued","2011"],["dc.format.extent","11"],["dc.identifier.isi","000288573100043"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23655"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.relation.eventlocation","Frankfurt, GERMANY"],["dc.relation.issn","0028-1298"],["dc.title","The expression and secretion of the connective tissue growth factor in cardiac fibroblasts is controlled through the RhoA signaling axis"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2011Conference Abstract [["dc.bibliographiccitation.journal","Naunyn-Schmiedeberg s Archives of Pharmacology"],["dc.bibliographiccitation.volume","383"],["dc.contributor.author","Vettel, Christiane"],["dc.contributor.author","Wittig, Karola"],["dc.contributor.author","Lutz, S."],["dc.contributor.author","Wieland, Thomas"],["dc.date.accessioned","2018-11-07T08:58:32Z"],["dc.date.available","2018-11-07T08:58:32Z"],["dc.date.issued","2011"],["dc.format.extent","53"],["dc.identifier.isi","000288573100259"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23663"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","New york"],["dc.relation.conference","77th Annual Meeting on German-Society-for-Experimental-and-Clinical-Pharmacology-and-Toxicology"],["dc.relation.eventlocation","Frankfurt, GERMANY"],["dc.relation.issn","0028-1298"],["dc.title","The alpha(1A)-adrenoceptor - G(1)-Tiam1-mediated activation of Rac1 contributes to the induction of hypertrophy in cardiomyocytes"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS