Now showing 1 - 10 of 33
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","279"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Histochemistry and Cell Biology"],["dc.bibliographiccitation.lastpage","291"],["dc.bibliographiccitation.volume","137"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Triebel, Jakob"],["dc.contributor.author","Posselt, Jessica"],["dc.contributor.author","Khan, Sajjad"],["dc.contributor.author","Ramadori, Pierluigi"],["dc.contributor.author","Raddatz, Dirk"],["dc.contributor.author","Ramadori, Giuliano"],["dc.date.accessioned","2018-11-07T09:13:12Z"],["dc.date.available","2018-11-07T09:13:12Z"],["dc.date.issued","2012"],["dc.description.abstract","MCRs are known to be expressed predominantly in the brain where they mediate metabolic and anti-inflammatory functions. Leptin plays an important role in appetite and energy regulation via signaling through melanocortin receptors (MCRs) in the brain. As serum levels of MCR ligands are elevated in a clinical situation [acute-phase response (APR)] to tissue damage, where the liver is responsible for the metabolic changes, we studied hepatic gene expression of MCRs in a model of muscle tissue damage induced by turpentine oil (TO) injection in rats. A significant increase in gene expression of all five MCRs (MC4R was the highest) in liver at the RNA and protein level was detected after TO injection. A similar pattern of increase was also found in the brain. Immunohistology showed MC4R in the cytoplasm, but also in the nucleus of parenchymal and non-parenchymal liver cells, whereas MC3R-positivity was mainly cytoplasmic. A time-dependent migration of MC4R protein from the cytoplasm into the nucleus was observed during APR, in parallel with an increase in alpha-MSH and leptin serum levels. An increase of MC4R was detected at the protein level in wild-type mice, while such an increase was not observed in IL-6ko mice during APR. Moreover, treatment of isolated liver cells with melanocortin agonists (alpha-MSH and THIQ) inhibited the endotoxin-induced upregulation of the acute-phase cytokine (IL-6, IL1 beta and TNF-alpha) gene expression in Kupffer cells and of chemokine gene expression in hepatocytes. MCRs are expressed not only in the brain, but also in liver cells and their gene expression in liver and brain tissue is upregulated during APR. Due to the presence of specific ligands in the serum, they may mediate metabolic changes and exert a protective effect on liver cells."],["dc.identifier.doi","10.1007/s00418-011-0899-7"],["dc.identifier.isi","000300326100002"],["dc.identifier.pmid","22183812"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7321"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/27120"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0948-6143"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Melanocortin receptors in rat liver cells: change of gene expression and intracellular localization during acute-phase response"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Journal of Cellular and Molecular Medicine"],["dc.bibliographiccitation.lastpage","9"],["dc.contributor.author","Malik, Gesa"],["dc.contributor.author","Wilting, Jörg"],["dc.contributor.author","Hess, Clemens Friedrich"],["dc.contributor.author","Ramadori, Giuliano"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.date.accessioned","2019-07-09T11:50:04Z"],["dc.date.available","2019-07-09T11:50:04Z"],["dc.date.issued","2019"],["dc.description.abstract","The mechanisms of radiation-induced liver damage are poorly understood. We investigated if tumour necrosis factor (TNF)-α acts synergistically with irradiation, and how its activity is influenced by platelet endothelial cell adhesion molecule-1 (PECAM-1). We studied murine models of selective single-dose (25 Gy) liver irradiation with and without TNF-α application (2 ÎĽg/mouse; i.p.). In serum of wild-type (wt)-mice, irradiation induced a mild increase in hepatic damage marker aspartate aminotransferase (AST) in comparison to sham-irradiated controls. AST levels further increased in mice treated with both irradiation and TNF-α. Accordingly, elevated numbers of leucocytes and increased expression of the macrophage marker CD68 were observed in the liver of these mice. In parallel to hepatic damage, a consecutive decrease in expression of hepatic PECAM-1 was found in mice that received radiation or TNF-α treatment alone. The combination of radiation and TNF-α induced an additional significant decline of PECAM-1. Furthermore, increased expression of hepatic lipocalin-2 (LCN-2), a hepatoprotective protein, was detected at mRNA and protein levels after irradiation or TNF-α treatment alone and the combination of both. Signal transducer and activator of transcription-3 (STAT-3) seems to be involved in the signalling cascade. To study the involvement of PECAM-1 in hepatic damage more deeply, the liver of both wt- and PECAM-1-knock-out-mice were selectively irradiated (25 Gy). Thereby, ko-mice showed higher liver damage as revealed by elevated AST levels, but also increased hepatoprotective LCN-2 expression. Our studies show that TNF-α has a pivotal role in radiation-induced hepatic damage. It acts in concert with irradiation and its activity is modulated by PECAM-1, which mediates pro- and anti-inflammatory signalling."],["dc.identifier.doi","10.1111/jcmm.14224"],["dc.identifier.pmid","30761739"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15851"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59695"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1582-4934"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","PECAM-1 modulates liver damage induced by synergistic effects of TNF-α and irradiation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","321"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Radiation and Environmental Biophysics"],["dc.bibliographiccitation.lastpage","338"],["dc.bibliographiccitation.volume","52"],["dc.contributor.author","Rave-Fraenk, Margret"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Christiansen, Hans"],["dc.contributor.author","Naz, Naila"],["dc.contributor.author","Sultan, Sadaf"],["dc.contributor.author","Amanzada, Ahmad"],["dc.contributor.author","Blaschke, Martina"],["dc.contributor.author","Cameron, Silke"],["dc.contributor.author","Ahmad, Shakil"],["dc.contributor.author","Hess, Clemens Friedrich"],["dc.contributor.author","Ramadori, Giuliano"],["dc.contributor.author","Moriconi, Federico"],["dc.date.accessioned","2018-11-07T09:22:03Z"],["dc.date.available","2018-11-07T09:22:03Z"],["dc.date.issued","2013"],["dc.description.abstract","The liver is considered a radiosensitive organ. However, in rats, high single-dose irradiation (HDI) showed only mild effects. Consequences of fractionated irradiation (FI) in such an animal model have not been studied so far. Rats were exposed to selective liver FI (total dose 60 Gy, 2 Gy/day) or HDI (25 Gy) and were killed three months after the end of irradiation. To study acute effects, HDI-treated rats were additionally killed at several time points between 1 and 48 h. Three months after irradiation, no differences between FI and HDI treatment were found for macroscopically detectable small \"scars\" on the liver surface and for an increased number of neutrophil granulocytes distributed in the portal fields and through the liver parenchyma. As well, no changes in HE-stained tissues or clear signs of fibrosis were found around the portal vessels. Differences were seen for the number of bile ducts being increased in FI- but not in HDI-treated livers. Serum levels indicative of liver damage were determined for alkaline phosphatase (AP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyltransferase (gamma GT) and lactate dehydrogenase (LDH). A significant increase of AP was detected only after FI while HDI led to the significant increases of AST and LDH serum levels. By performing RT-PCR, we detected up-regulation of matrix metalloproteinases, MMP-2, MMP-9, MMP-14, and of their inhibitors, TIMP-1, TIMP-2 and TIMP-3, shortly after HDI, but not at 3 month after FI or HDI. Overall, we saw punctual differences after FI and HDI, and a diffuse formation of small scars at the liver surface. Lack of \"provisional clot\"-formation and absence of recruitment of mononuclear phagocytes could be one explanation for scar formation as incomplete repair response to irradiation."],["dc.identifier.doi","10.1007/s00411-013-0468-7"],["dc.identifier.isi","000322033000004"],["dc.identifier.pmid","23595725"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/29250"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0301-634X"],["dc.title","Rat model of fractionated (2 Gy/day) 60 Gy irradiation of the liver: long-term effects"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","470"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biology"],["dc.bibliographiccitation.volume","11"],["dc.contributor.affiliation","Malik, Ihtzaz Ahmed; 1Department of Geriatrics, University Medical Center Goettingen, Waldweg 33, D-37073 Goettingen, Germany"],["dc.contributor.affiliation","Ramadori, Giuliano; 2Center of Internal Medicine, University Medical Center Goettingen, Robert-Koch Str. 38, D-37075 Goettingen, Germany; giulianoramadori@gmail.com"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Ramadori, Giuliano"],["dc.date.accessioned","2022-04-01T10:02:04Z"],["dc.date.available","2022-04-01T10:02:04Z"],["dc.date.issued","2022"],["dc.date.updated","2022-04-08T07:27:40Z"],["dc.description.abstract","A mild to moderate increase in acute-phase proteins (APPs) and a decrease in serum albumin levels are detected in hospitalized COVID-19 patients. A similar trend is also observed for acute-phase cytokines (APC), mainly IL6, besides chemokines (e.g., CXCL8 and CCL2). However, the source of the chemokines in these patients at different stages of disease remains to be elucidated. We investigated hepatic gene expression of CXC- and CC-chemokines in a model of a localized extrahepatic aseptic abscess and in a model of septicemia produced by the intramuscular injection of turpentine oil (TO) into each hindlimb or lipopolysaccharide (LPS) intraperitoneally (i.p.) in rats and mice (wild-type (WT) and IL6-KO). Together with a striking increase in the serum IL6 level, strong serum CXCL2 and CXCL8 concentrations were detected. Correspondingly, rapid (2 h) upregulation of CXCL1, CXCL2, CXCL5, and CXCL8 was observed in rat liver after intramuscular TO injection. The induction of the gene expression of CXCL1 and CXCL8 was the fastest and strongest. The hepatic CXC-chemokines behaved like positive APPs that depend on IL6 production by activated macrophages recruited to extrahepatic damaged tissue. Chemokine upregulation was greatly reduced in IL6-KO mice. However, IL6 was dispensable in the LPS–APR model, as massive induction of hepatic chemokines studied was measured in IL6-KO mice."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.3390/biology11030470"],["dc.identifier.pii","biology11030470"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/105816"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-530"],["dc.relation.eissn","2079-7737"],["dc.rights","CC BY 4.0"],["dc.title","Interleukin-6-Production Is Responsible for Induction of Hepatic Synthesis of Several Chemokines as Acute-Phase Mediators in Two Animal Models: Possible Significance for Interpretation of Laboratory Changes in Severely Ill Patients"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2011Conference Abstract
    [["dc.bibliographiccitation.journal","Laboratory Investigation"],["dc.bibliographiccitation.volume","91"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Naz, N."],["dc.contributor.author","Sheikh, Nadeem"],["dc.contributor.author","Khan, Sajjad"],["dc.contributor.author","Ramadori, Giuliano"],["dc.date.accessioned","2018-11-07T08:59:20Z"],["dc.date.available","2018-11-07T08:59:20Z"],["dc.date.issued","2011"],["dc.format.extent","368A"],["dc.identifier.isi","000291285001219"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23867"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.publisher.place","New york"],["dc.relation.conference","100th Annual Meeting of the United States and Canadian-Academy-of-Pathology"],["dc.relation.eventlocation","San Antonio, TX"],["dc.relation.issn","0023-6837"],["dc.title","Comparison of Changes in the Gene Expression of Transferrin Receptor-1 and Other Iron Regulatory Proteins in the Rat Liver and Brain during Acute-Phase-Response"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","7347"],["dc.bibliographiccitation.issue","41"],["dc.bibliographiccitation.journal","World Journal of Gastroenterology"],["dc.bibliographiccitation.lastpage","7358"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Wilting, Jörg"],["dc.contributor.author","Ramadori, Giuliano"],["dc.contributor.author","Naz, Naila"],["dc.date.accessioned","2019-07-09T11:44:36Z"],["dc.date.available","2019-07-09T11:44:36Z"],["dc.date.issued","2017"],["dc.description.abstract","AIM To studied iron metabolism in liver, spleen, and serum after acute liver-damage, in relation to surrogate markers for liver-damage and repair. METHODS Rats received intraperitoneal injection of the hepatotoxin thioacetamide (TAA), and were sacrificed regularly between 1 and 96 h thereafter. Serum levels of transaminases and iron were measured using conventional laboratory assays. Liver tissue was used for conventional histology, immunohistology, and iron staining. The expression of acute-phase cytokines, ferritin light chain (FTL), and ferritin heavy chain (FTH) was investigated in the liver by qRT-PCR. Western blotting was used to investigate FTL and FTH in liver tissue and serum. Liver and spleen tissue was also used to determine iron concentrations. RESULTS After a short initial decrease, iron serum concentrations increased in parallel with serum transaminase (aspartate aminotransferase and alanine aminotransferase) levels, which reached a maximum at 48 h, and decreased thereafter. Similarly, after 48 h a significant increase in FTL, and after 72h in FTH was detected in serum. While earliest morphological signs of inflammation in liver were visible after 6 h, increased expression of the two acute-phase cytokines IFN-γ (1h) and IL-1β (3h) was detectable earlier, with maximum values after 12-24 h. Iron concentrations in liver tissue increased steadily between 1 h and 48 h, and remained high at 96 h. In contrast, spleen iron concentrations remained unchanged until 48 h, and increased mildly thereafter (96 h). Although tissue iron staining was negative, hepatic FTL and FTH protein levels were strongly elevated. Our results reveal effects on hepatic iron concentrations after direct liver injury by TAA. The increase of liver iron concentrations may be due to the uptake of a significant proportion of the metal by healthy hepatocytes, and only to a minor extent by macrophages, as spleen iron concentrations do not increase in parallel. The temporary increase of iron, FTH and transaminases in serum is obviously due to their release by damaged hepatocytes. CONCLUSION Increased liver iron levels may be the consequence of hepatocyte damage. Iron released into serum by damaged hepatocytes is obviously transported back and stored via ferritins."],["dc.identifier.doi","10.3748/wjg.v23.i41.7347"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14835"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59046"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2219-2840"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0"],["dc.subject.ddc","610"],["dc.title","Reabsorption of iron into acutely damaged rat liver: A role for ferritins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","217"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Histochemistry and Cell Biology"],["dc.bibliographiccitation.lastpage","233"],["dc.bibliographiccitation.volume","137"],["dc.contributor.author","Wojcik, Marta"],["dc.contributor.author","Ramadori, Pierluigi"],["dc.contributor.author","Blaschke, Martina"],["dc.contributor.author","Sultan, Sadaf"],["dc.contributor.author","Khan, Sajjad"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Naz, Naila"],["dc.contributor.author","Martius, Gesa"],["dc.contributor.author","Ramadori, Giuliano"],["dc.contributor.author","Schultze, Frank Christian"],["dc.date.accessioned","2018-11-07T09:14:07Z"],["dc.date.available","2018-11-07T09:14:07Z"],["dc.date.issued","2012"],["dc.description.abstract","It has been suggested that cyclooxygenase-2 (COX-2)-mediated prostaglandin synthesis is associated with liver inflammation and carcinogenesis. The aim of this study is to identify the cellular source of COX-2 expression in different stages, from acute liver injury through liver fibrosis to cholangiocarcinoma (CC). We induced in rats acute and \"chronic\" liver injury (thioacetamide (TAA) or carbon tetrachloride (CCl(4))) and CC development (TAA) and assessed COX-2 gene expression in normal and damaged liver tissue by RT-PCR of total RNA. The cellular localization of COX-2 protein in liver tissue was analyzed by immunohistochemistry as well as in isolated rat liver cells by Western blotting. The findings were compared with those obtained in human cirrhotic liver tissue. The specificity of the antibodies was tested by 2-DE Western blot and mass spectrometric identification of the positive protein spots. RT-PCR analysis of total RNA revealed an increase of hepatic COX-2 gene expression in acutely as well as \"chronically\" damaged liver. COX-2-protein was detected in those ED1(+)/ED2(+) cells located in the non-damaged tissue (resident tissue macrophages). In addition COX-2 positivity in inflammatory mononuclear phagocytes (ED1(+)/ED2(-)), which were also present within the tumoral tissue was detected. COX-2 protein was clearly detectable in isolated Kupffer cells as well as (at lower level) in isolated \"inflammatory\" macrophages. Similar results were obtained in human cirrhotic liver. COX-2 protein is constitutively detectable in liver tissue macrophages. Inflammatory mononuclear phagocytes contribute to the increase of COX-2 gene expression in acute and chronic liver damage induced by different toxins and in the CC microenvironment."],["dc.description.sponsorship","Ministry of Science and Higher Education, Poland [N N308 3169 33]"],["dc.identifier.doi","10.1007/s00418-011-0889-9"],["dc.identifier.isi","000299371500008"],["dc.identifier.pmid","22131058"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8811"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/27328"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","0948-6143"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Immunodetection of cyclooxygenase-2 (COX-2) is restricted to tissue macrophages in normal rat liver and to recruited mononuclear phagocytes in liver injury and cholangiocarcinoma"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","337"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Shock"],["dc.bibliographiccitation.lastpage","345"],["dc.bibliographiccitation.volume","41"],["dc.contributor.author","Ahmad, Shakil"],["dc.contributor.author","Sultan, Sadaf"],["dc.contributor.author","Naz, Naila"],["dc.contributor.author","Ahmad, Ghayyor"],["dc.contributor.author","Alwahsh, Salamah Mohammad"],["dc.contributor.author","Cameron, Silke"],["dc.contributor.author","Moriconi, Federico"],["dc.contributor.author","Ramadori, Giuliano"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.date.accessioned","2018-11-07T09:41:37Z"],["dc.date.available","2018-11-07T09:41:37Z"],["dc.date.issued","2014"],["dc.description.abstract","Decreased serum and increased hepatic iron uptake is the hallmark of acute-phase (AP) response. Iron uptake is controlled by iron transport proteins such as transferrin receptors (TfRs) and lipocalin 2 (LCN-2). The current study aimed to understand the regulation of iron uptake in primary culture hepatocytes in the presence/absence of AP mediators. Rat hepatocytes were stimulated with different concentrations of iron alone (0.01, 0.1, 0.5 mM) and AP cytokines (interleukin 6 [IL-6], IL-1, tumor necrosis factor ) in the presence/absence of iron (FeCl3: 0.1 mM). Hepatocytes were harvested at different time points (0, 6, 12, 24 h). Total mRNA and proteins were extracted for reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot. A significant iron uptake was detected with 0.1 mM iron administration with a maximum (133.37 +/- 4.82 mu g/g of protein) at 24 h compared with control and other iron concentrations. This uptake was further enhanced in the presence of AP cytokines with a maximum iron uptake (481 +/- 25.81 mu g/g of protein) after concomitant administration of IL-6 + iron to cultured hepatocytes. Concomitantly, gene expression of LCN-2 and ferritin subunits (light- and heavy-chain ferritin subunits) was upregulated by iron or/and AP cytokines with a maximum at 24 h both at mRNA and protein levels. In contrast, a decreased TfR1 level was detected by IL-6 and iron alone, whereas combination of iron and AP cytokines (mainly IL-6) abrogated the downregulation of TfR1. An increase in LCN-2 release into the supernatant of cultured hepatocytes was observed after addition of iron/AP cytokines into the medium. This increase in secretion was further enhanced by combination of IL-6 + iron. In conclusion, iron uptake is tightly controlled by already present iron concentration in the culture. This uptake can be further enhanced by AP cytokines, mainly by IL-6."],["dc.identifier.doi","10.1097/SHK.0000000000000107"],["dc.identifier.isi","000335648600011"],["dc.identifier.pmid","24365882"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33775"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Lippincott Williams & Wilkins"],["dc.relation.issn","1540-0514"],["dc.relation.issn","1073-2322"],["dc.title","REGULATION OF IRON UPTAKE IN PRIMARY CULTURE RAT HEPATOCYTES: THE ROLE OF ACUTE-PHASE CYTOKINES"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","166"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Laboratory Investigation"],["dc.bibliographiccitation.lastpage","177"],["dc.bibliographiccitation.volume","92"],["dc.contributor.author","Moriconi, Federico"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Amanzada, Ahmad"],["dc.contributor.author","Blaschke, Martina"],["dc.contributor.author","Raddatz, Dirk"],["dc.contributor.author","Khan, Sajjad"],["dc.contributor.author","Ramadori, Giuliano"],["dc.date.accessioned","2018-11-07T09:14:00Z"],["dc.date.available","2018-11-07T09:14:00Z"],["dc.date.issued","2012"],["dc.description.abstract","Chronic inflammatory bowel diseases can be successfully treated with antibodies against the acute phase mediator TNF-alpha. The process of activation and of extravasation of inflammatory cells from the blood into the 'stressed' tissue site is controlled by cytokines and chemokines, which attract leukocytes and by adhesion molecules, which mediate their attachment and transmigration toward the affected cell(s). The changes in the gene expression of adhesion molecules taking place in those cells before attachment have been less investigated. Changes of PECAM-1, ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1) gene expression were studied in phytohaemagglutinin (PHA)- and lipolysaccharide (LPS)-treated human peripheral blood leukocytes (PBLs), granulocytes and the human monocyte cell line U-937. Cells were treated either with PHA or with LPS in the presence or absence of infliximab and incubated with TNF-alpha, IFN-gamma and/or transforming growth factor beta (TGF-beta) and treated as above. Activation of PBLs by PHA or LPS treatment triggered a sharp upregulation of ICAM-1, VCAM-1 gene expression and a time-dependent downregulation of PECAM-1 gene expression reaching a minimum 4 h from start of the experiment. The anti-TNF-alpha antibody infliximab, by neutralizing TNF-alpha and IFN-gamma production, completely reversed PECAM-1 mRNA downregulation and ICAM-1 and VCAM-1 upregulation. Immunostaining of PBLs cytospins with antibodies against PECAM-1 and ICAM-1 confirmed RT-PCR and western blot results. PBLs IFN-gamma or TNF-alpha treatment downregulated PECAM-1 in parallel with the upregulation of ICAM-1 and VCAM-1 gene expression, whereas TGF-beta upregulated PECAM-1- and downregulated ICAM-1 and VCAM-1 gene expression counteracting the effect of TNF-alpha or IFN-gamma. Similar results were obtained in human U937 cells and in granulocyte cultures by TNF-alpha or IFN-gamma treatment. Taken together, these results suggest that infliximab, blocking TNF-alpha and IFN-gamma production, exerts its anti-inflammatory effect through inhibiting downregulation of PECAM-1 gene expression and upregulation of ICAM-1 and VCAM-1 expression in leukocytes of the peripheral blood. These results also suggest that TGF-beta may thus be of therapeutic importance as an anti-inflammatory agent. Laboratory Investigation (2012) 92, 166-177; doi:10.1038/labinvest.2011.160; published online 31 October 2011"],["dc.identifier.doi","10.1038/labinvest.2011.160"],["dc.identifier.isi","000299799700001"],["dc.identifier.pmid","22042082"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/27298"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","0023-6837"],["dc.title","The anti-TNF-alpha antibody infliximab indirectly regulates PECAM-1 gene expression in two models of in vitro blood cell activation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","842"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Laboratory Investigation"],["dc.bibliographiccitation.lastpage","856"],["dc.bibliographiccitation.volume","92"],["dc.contributor.author","Naz, Naila"],["dc.contributor.author","Malik, Ihtzaz Ahmed"],["dc.contributor.author","Sheikh, Nadeem"],["dc.contributor.author","Ahmad, Shakil"],["dc.contributor.author","Khan, Sajjad"],["dc.contributor.author","Blaschke, Martina"],["dc.contributor.author","Schultze, Frank"],["dc.contributor.author","Ramadori, Giuliano"],["dc.date.accessioned","2018-11-07T09:09:49Z"],["dc.date.available","2018-11-07T09:09:49Z"],["dc.date.issued","2012"],["dc.description.abstract","Liver is the central organ of iron metabolism. During acute-phase-response (APR), serum iron concentration rapidly decreases. The current study aimed to compare expression and localization of iron transport protein ferroportin-1 (Fpn-1) and of other iron import proteins after experimental tissue damage induced by injecting turpentine oil in the hind limbs of rats and mice. Serum and spleen iron concentration decreased with an increase in total liver, cytoplasmic and nuclear iron concentration. In liver, mRNA amount of Fpn-1, Fpn-1a, Fpn-1b, HFE, hemojuvelin (HJV) and hephaestin (heph) genes showed a rapid decrease. Hepcidin, divalent metal transporter-1 (DMT-1), transferrin (Tf) and Tf-receptor-1 (TfR1), TfR-2 (TfR2) gene expression was increased. Western blot analysis of liver tissue lysate confirmed the changes observed at mRNA level. In spleen, a rapid decrease in gene expression of Fpn-1, Fpn-1a, Fpn-1b, DMT-1, Tf, TfR1 and TfR2, and an increase in hepcidin was observed. Immunohistochemistry of DMT-1 and TfR2 were mainly detected in the nucleus of rat liver and spleen, whereas TfR1 was clearly localized in the plasma membrane. Fpn-1 was mostly found in the nuclei of liver cells, whereas in spleen, the protein was mainly detected in the cell membrane. Western blot analysis of liver fractions confirmed immunohistochemical results. In livers of wild-type mice, gene expression of Fpn-1, Fpn-1a and Fpn-1b was downregulated, whereas hepcidin gene expression was increased. In contrast, these changes were less pronounced in IL-6ko-mice. Cytokine (IL-6, IL-1 beta and TNF-alpha) treatment of rat hepatocytes showed a downregulation of Fpn-1, Fpn-1a and Fpn-1b, and upregulation of hepcidin gene expression. Moreover, western blot analysis of cell lysate of IL-6-treated hepatocytes detected, as expected, an increase of alpha 2-macroglobulin (positive acute-phase protein), whereas albumin (negative acute-phase protein) and Fpn-1 were downregulated. Our results demonstrate that liver behaves as a 'sponge' for iron under acute-phase conditions, and Fpn-1 behaves as a negative acute-phase protein in rat hepatocytes mainly, but not exclusively, because of the effect of IL-6. These changes could explain iron retention in the cytoplasm and in the nucleus of hepatocytes during APR. Laboratory Investigation (2012) 92, 842-856; doi:10.1038/labinvest.2012.52; published online 2 April 2012"],["dc.description.sponsorship","Deutsche Krebshilfe [108774]"],["dc.identifier.doi","10.1038/labinvest.2012.52"],["dc.identifier.isi","000304730600004"],["dc.identifier.pmid","22469696"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/26353"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","0023-6837"],["dc.title","Ferroportin-1 is a 'nuclear'-negative acute-phase protein in rat liver: a comparison with other iron-transport proteins"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS