Now showing 1 - 3 of 3
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","254"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Nanotoxicology"],["dc.bibliographiccitation.lastpage","268"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Tarantola, Marco"],["dc.contributor.author","Pietuch, Anna"],["dc.contributor.author","Schneider, David"],["dc.contributor.author","Rother, Jan"],["dc.contributor.author","Sunnick, Eva"],["dc.contributor.author","Rosman, Christina"],["dc.contributor.author","Pierrat, Sebastien"],["dc.contributor.author","Soennichsen, Carsten"],["dc.contributor.author","Wegener, Joachim"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2018-11-07T08:55:39Z"],["dc.date.available","2018-11-07T08:55:39Z"],["dc.date.issued","2011"],["dc.description.abstract","Nanoparticle exposure is monitored by a combination of two label-free and non-invasive biosensor devices which detect cellular shape and viscoelasticity (quartz crystal microbalance), cell motility and the dynamics of epithelial cell-cell contacts (electric cell-substrate impedance sensing). With these tools we have studied the impact of nanoparticle shape on cellular physiology. Gold (Au) nanoparticles coated with CTAB were synthesized and studied in two distinct shapes: Spheres with a diameter of (43 +/-+/- 4) nm and rods with a size of (38 +/-+/- 7) nm xx (17 +/-+/- 3) nm. Dose-response experiments were accompanied by conventional cytotoxicity tests as well as fluorescence and dark-field microscopy to visualize the intracellular particle distribution. We found that spherical gold nanoparticles with identical surface functionalization are generally more toxic and more efficiently ingested than rod-shaped particles. We largely attribute the higher toxicity of CTAB-coated spheres as compared to rod-shaped particles to a higher release of toxic CTAB upon intracellular aggregation."],["dc.description.sponsorship","German Science Foundation (DFG) [JA 963/10-1]"],["dc.identifier.doi","10.3109/17435390.2010.528847"],["dc.identifier.isi","000290936000013"],["dc.identifier.pmid","21050076"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22954"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Taylor & Francis Ltd"],["dc.relation.issn","1743-5404"],["dc.relation.issn","1743-5390"],["dc.title","Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","3683"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","Small"],["dc.bibliographiccitation.lastpage","3690"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Rosman, Christina"],["dc.contributor.author","Pierrat, Sebastien"],["dc.contributor.author","Henkel, Andreas"],["dc.contributor.author","Tarantola, Marco"],["dc.contributor.author","Schneider, David"],["dc.contributor.author","Sunnick, Eva"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Soennichsen, Carsten"],["dc.date.accessioned","2018-11-07T09:02:22Z"],["dc.date.available","2018-11-07T09:02:22Z"],["dc.date.issued","2012"],["dc.description.abstract","Toxicological effects of nanoparticles are associated with their internalization into cells. Hence, there is a strong need for techniques revealing the interaction between particles and cells as well as quantifying the uptake at the same time. For that reason, herein optical dark-field microscopy is used in conjunction with transmission electron microscopy to investigate the uptake of gold nanoparticles into epithelial cells with respect to shape, stabilizing agent, and surface charge. The number of internalized particles is strongly dependent on the stabilizing agent, but not on the particle shape. A test of metabolic activity shows no direct correlation with the number of internalized particles. Therefore, particle properties besides coating and shape are suspected to contribute to the observed toxicity."],["dc.description.sponsorship","DFG [SPP 1313]"],["dc.identifier.doi","10.1002/smll.201200853"],["dc.identifier.isi","000312214400019"],["dc.identifier.pmid","22888068"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24670"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-v C H Verlag Gmbh"],["dc.relation.issn","1613-6810"],["dc.title","A New Approach to Assess Gold Nanoparticle Uptake by Mammalian Cells: Combining Optical Dark-Field and Transmission Electron Microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2011Journal Article
    [["dc.bibliographiccitation.firstpage","1494"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Chemical Research in Toxicology"],["dc.bibliographiccitation.lastpage","1506"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Tarantola, Marco"],["dc.contributor.author","Sunnick, Eva"],["dc.contributor.author","Schneider, David"],["dc.contributor.author","Marel, Anna-Kristina"],["dc.contributor.author","Kunze, Angelika"],["dc.contributor.author","Janshoff, Andreas"],["dc.date.accessioned","2018-11-07T08:52:26Z"],["dc.date.available","2018-11-07T08:52:26Z"],["dc.date.issued","2011"],["dc.description.abstract","Cellular motility is the major driving force of numerous biological phenomena including wound healing, immune response, embryogenesis, cancer formation, and metastasis. We studied the response of epithelial FaDu monolayers cultured on gold electrodes of an acoustic resonator (quartz crystal microbalance, QCM) and impedance sensor (electric cell-substrate impedance sensing, ECIS) to externally applied chemical stimuli interfering with cytoskeleton organization. Epithelial cell motility of confluent monolayers is characterized by subtle cell shape changes and variations in the cell-substrate as well as cell-cell distance without net directionality of individual cells. The impact of small molecules such as cytochalasin D, phalloidin, and blebbistatin as well as paclitaxel, nocodazol, and colchicin on actin and microtubules organization was quantified by conventional sensors' readouts and by comparing the noise pattern of the signals which is attributed to cellular dynamics. The responsiveness of noninvasive and label-free techniques relying on cellular dynamics is compared to classical viability assays and changes of the overall impedance of ultrasmall electrodes or acoustic loads of a thickness shear mode resonator. Depending on the agent used, a distinct sensor response was found, which can be used as a fingerprint of the cellular response. Cytoskeletal rearrangements and nuclear integrity were corroborated by fluorescence microscopy and correlated to the readouts of QCM and ECIS."],["dc.description.sponsorship","graduate school of excellence MAINZ; DFG [SPP 1313, SFB 937]"],["dc.identifier.doi","10.1021/tx200115q"],["dc.identifier.isi","000295058900009"],["dc.identifier.pmid","21815656"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/22162"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Chemical Soc"],["dc.relation.issn","1520-5010"],["dc.relation.issn","0893-228X"],["dc.title","Dynamic Changes of Acoustic Load and Complex Impedance as Reporters for the Cytotoxicity of Small Molecule Inhibitors"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS