Options
Hackert, Philipp
Loading...
Preferred name
Hackert, Philipp
Official Name
Hackert, Philipp
Alternative Name
Hackert, P.
Main Affiliation
Now showing 1 - 10 of 17
2017Journal Article [["dc.bibliographiccitation.firstpage","2004"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","EMBO reports"],["dc.bibliographiccitation.lastpage","2014"],["dc.bibliographiccitation.volume","18"],["dc.contributor.author","Warda, Ahmed S"],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Sloan, Katherine E"],["dc.contributor.author","Bohnsack, Markus T"],["dc.date.accessioned","2020-12-10T18:42:38Z"],["dc.date.available","2020-12-10T18:42:38Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.15252/embr.201744940"],["dc.identifier.eissn","1469-3178"],["dc.identifier.issn","1469-221X"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78032"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Human METTL16 is a N 6 ‐methyladenosine (m 6 A) methyltransferase that targets pre‐mRNAs and various non‐coding RNAs"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2013Conference Abstract [["dc.bibliographiccitation.journal","Yeast"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Martin, Roman"],["dc.contributor.author","Straub, Annika U."],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Ruprecht, Maike"],["dc.contributor.author","Simm, S."],["dc.contributor.author","Schleiff, Enrico"],["dc.contributor.author","Bohnsack, M."],["dc.contributor.author","Simm, Stefan"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2018-11-07T09:20:12Z"],["dc.date.available","2018-11-07T09:20:12Z"],["dc.date.issued","2013"],["dc.format.extent","100"],["dc.identifier.isi","000327927400151"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/28829"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.eventlocation","Frankfurt Main, GERMANY"],["dc.relation.issn","1097-0061"],["dc.relation.issn","0749-503X"],["dc.title","RNA helicase function in yeast ribosome biogenesis"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2020Journal Article [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Jia, Junqiao"],["dc.contributor.author","Absmeier, Eva"],["dc.contributor.author","Holton, Nicole"],["dc.contributor.author","Pietrzyk-Brzezinska, Agnieszka J."],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Bohnsack, Markus T."],["dc.contributor.author","Wahl, Markus C."],["dc.date.accessioned","2021-04-14T08:31:48Z"],["dc.date.available","2021-04-14T08:31:48Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1038/s41467-020-19221-x"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83718"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2041-1723"],["dc.title","The interaction of DNA repair factors ASCC2 and ASCC3 is affected by somatic cancer mutations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2015Conference Abstract [["dc.bibliographiccitation.firstpage","209"],["dc.bibliographiccitation.journal","FEBS Journal"],["dc.bibliographiccitation.lastpage","210"],["dc.bibliographiccitation.volume","282"],["dc.contributor.author","Heininger, A. U."],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Andreou, Alexandra-Zoi"],["dc.contributor.author","Boon, K.-L."],["dc.contributor.author","Prior, M."],["dc.contributor.author","Schmidt, B."],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Schleiff, Enrico"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Lührmann, Reinhard"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Klostermeier, Dagmar"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2018-11-07T09:54:51Z"],["dc.date.available","2018-11-07T09:54:51Z"],["dc.date.issued","2015"],["dc.identifier.isi","000362570603174"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36625"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.publisher.place","Hoboken"],["dc.relation.eventlocation","Berlin, GERMANY"],["dc.relation.issn","1742-4658"],["dc.relation.issn","1742-464X"],["dc.title","Sequestering and protein cofactor competition regulate a multifunctional RNA helicase in different pathways"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2020Journal Article [["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","RNA Biology"],["dc.bibliographiccitation.lastpage","12"],["dc.contributor.author","Choudhury, Priyanka"],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2021-04-14T08:31:39Z"],["dc.date.available","2021-04-14T08:31:39Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1080/15476286.2020.1829366"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83670"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1555-8584"],["dc.relation.issn","1547-6286"],["dc.title","The DExD box ATPase DDX55 is recruited to domain IV of the 28S ribosomal RNA by its C-terminal region"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","1339"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","RNA"],["dc.bibliographiccitation.lastpage","1350"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Kretschmer, Jens"],["dc.contributor.author","Rao, Harita"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Sloan, Katherine E."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2020-12-10T18:41:55Z"],["dc.date.available","2020-12-10T18:41:55Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1261/rna.064238.117"],["dc.identifier.eissn","1469-9001"],["dc.identifier.issn","1355-8382"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77730"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","The m 6 A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′–3′ exoribonuclease XRN1"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","6152"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Aquino, Gerald Ryan R."],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Krogh, Nicolai"],["dc.contributor.author","Pan, Kuan-Ting"],["dc.contributor.author","Jaafar, Mariam"],["dc.contributor.author","Henras, Anthony K."],["dc.contributor.author","Nielsen, Henrik"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2021-12-01T09:20:51Z"],["dc.date.available","2021-12-01T09:20:51Z"],["dc.date.issued","2021"],["dc.description.abstract","Early pre-60S ribosomal particles are poorly characterized, highly dynamic complexes that undergo extensive rRNA folding and compaction concomitant with assembly of ribosomal proteins and exchange of assembly factors. Pre-60S particles contain numerous RNA helicases, which are likely regulators of accurate and efficient formation of appropriate rRNA structures. Here we reveal binding of the RNA helicase Dbp7 to domain V/VI of early pre-60S particles in yeast and show that in the absence of this protein, dissociation of the Npa1 scaffolding complex, release of the snR190 folding chaperone, recruitment of the A3 cluster factors and binding of the ribosomal protein uL3 are impaired. uL3 is critical for formation of the peptidyltransferase center (PTC) and is responsible for stabilizing interactions between the 5′ and 3′ ends of the 25S, an essential pre-requisite for subsequent pre-60S maturation events. Highlighting the importance of pre-ribosome remodeling by Dbp7, our data suggest that in the absence of Dbp7 or its catalytic activity, early pre-ribosomal particles are targeted for degradation."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2022"],["dc.identifier.doi","10.1038/s41467-021-26208-9"],["dc.identifier.pii","26208"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94285"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation.eissn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.title","The RNA helicase Dbp7 promotes domain V/VI compaction and stabilization of inter-domain interactions during early 60S assembly"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.firstpage","539"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","RNA Biology"],["dc.bibliographiccitation.lastpage","553"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Davila Gallesio, Jimena"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2020-12-10T18:15:16Z"],["dc.date.available","2020-12-10T18:15:16Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1080/15476286.2020.1716540"],["dc.identifier.eissn","1555-8584"],["dc.identifier.issn","1547-6286"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74799"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Sgd1 is an MIF4G domain-containing cofactor of the RNA helicase Fal1 and associates with the 5’ domain of the 18S rRNA sequence"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Zhang, Ying"],["dc.contributor.author","De Laurentiis, Evelina"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Wahlig, Mascha"],["dc.contributor.author","Ranjan, Namit"],["dc.contributor.author","Gruseck, Simon"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Wölfle, Tina"],["dc.contributor.author","Rodnina, Marina V."],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Rospert, Sabine"],["dc.date.accessioned","2021-04-14T08:28:39Z"],["dc.date.available","2021-04-14T08:28:39Z"],["dc.date.issued","2021"],["dc.description.abstract","The guided entry of tail-anchored proteins (GET) pathway assists in the posttranslational delivery of tail-anchored proteins, containing a single C-terminal transmembrane domain, to the ER. Here we uncover how the yeast GET pathway component Get4/5 facilitates capture of tail-anchored proteins by Sgt2, which interacts with tail-anchors and hands them over to the targeting component Get3. Get4/5 binds directly and with high affinity to ribosomes, positions Sgt2 close to the ribosomal tunnel exit, and facilitates the capture of tail-anchored proteins by Sgt2. The contact sites of Get4/5 on the ribosome overlap with those of SRP, the factor mediating cotranslational ER-targeting. Exposure of internal transmembrane domains at the tunnel exit induces high-affinity ribosome binding of SRP, which in turn prevents ribosome binding of Get4/5. In this way, the position of a transmembrane domain within nascent ER-targeted proteins mediates partitioning into either the GET or SRP pathway directly at the ribosomal tunnel exit."],["dc.identifier.doi","10.1038/s41467-021-20981-3"],["dc.identifier.pmid","33542241"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82670"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/220"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/139"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation","SFB 1190 | P16: Co-translationaler Einbau von Proteinen in die bakterielle Plasmamembran"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG K. Bohnsack (RNA Metabolism)"],["dc.relation.workinggroup","RG Rodnina"],["dc.rights","CC BY 4.0"],["dc.title","Ribosome-bound Get4/5 facilitates the capture of tail-anchored proteins by Sgt2 in yeast"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article Research Paper [["dc.bibliographiccitation.artnumber","209"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Kleiber, Nicole"],["dc.contributor.author","Lemus-Diaz, Nicolas"],["dc.contributor.author","Stiller, Carina"],["dc.contributor.author","Heinrichs, Marleen"],["dc.contributor.author","Mai, Mandy Mong-Quyen"],["dc.contributor.author","Hackert, Philipp"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Bohnsack, Markus T."],["dc.date.accessioned","2022-02-01T10:31:09Z"],["dc.date.available","2022-02-01T10:31:09Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract Modified nucleotides in tRNAs are important determinants of folding, structure and function. Here we identify METTL8 as a mitochondrial matrix protein and active RNA methyltransferase responsible for installing m 3 C 32 in the human mitochondrial (mt-)tRNA Thr and mt-tRNA Ser(UCN) . METTL8 crosslinks to the anticodon stem loop (ASL) of many mt-tRNAs in cells, raising the question of how methylation target specificity is achieved. Dissection of mt-tRNA recognition elements revealed U 34 G 35 and t 6 A 37 /(ms 2 )i 6 A 37 , present concomitantly only in the ASLs of the two substrate mt-tRNAs, as key determinants for METTL8-mediated methylation of C 32 . Several lines of evidence demonstrate the influence of U 34 , G 35 , and the m 3 C 32 and t 6 A 37 /(ms 2 )i 6 A 37 modifications in mt-tRNA Thr/Ser(UCN) on the structure of these mt-tRNAs. Although mt-tRNA Thr/Ser(UCN) lacking METTL8-mediated m 3 C 32 are efficiently aminoacylated and associate with mitochondrial ribosomes, mitochondrial translation is mildly impaired by lack of METTL8. Together these results define the cellular targets of METTL8 and shed new light on the role of m 3 C 32 within mt-tRNAs."],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.1038/s41467-021-27905-1"],["dc.identifier.pii","27905"],["dc.identifier.pmid","35017528"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/98794"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/390"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/167"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-517"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P04: Der GET-Rezeptor als ein Eingangstor zum ER und sein Zusammenspiel mit GET bodies"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG M. Bohnsack (Molecular Biology)"],["dc.relation.workinggroup","RG Richter-Dennerlein (Mitoribosome Assembly)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The RNA methyltransferase METTL8 installs m3C32 in mitochondrial tRNAsThr/Ser(UCN) to optimise tRNA structure and mitochondrial translation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC