Now showing 1 - 2 of 2
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","2379"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Human Molecular Genetics"],["dc.bibliographiccitation.lastpage","2393"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Reinhold, Robert"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Balleininger, Martina"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Mick, David U."],["dc.date.accessioned","2017-09-07T11:44:14Z"],["dc.date.available","2017-09-07T11:44:14Z"],["dc.date.issued","2011"],["dc.description.abstract","Defects in mitochondrial energy metabolism lead to severe human disorders, mainly affecting tissues especially dependent on oxidative phosphorylation, such as muscle and brain. Leigh Syndrome describes a severe encephalomyopathy in infancy, frequently caused by mutations in SURF1. SURF1, termed Shy1 in Saccharomyces cerevisiae, is a conserved assembly factor for the terminal enzyme of the respiratory chain, cytochrome c oxidase. Although the molecular function of SURF1/Shy1 is still enigmatic, loss of function leads to cytochrome c oxidase deficiency and reduced expression of the central subunit Cox1 in yeast. Here, we provide insights into the molecular mechanisms leading to disease through missense mutations in codons of the most conserved amino acids in SURF1. Mutations affecting G(124) do not compromise import of the SURF1 precursor protein but lead to fast turnover of the mature protein within the mitochondria. Interestingly, an (YD)-D-274 exchange neither affects stability nor localization of the protein. Instead, SURF1(Y274D) accumulates in a 200 kDa cytochrome c oxidase assembly intermediate. Using yeast as a model, we demonstrate that the corresponding Shy1(Y344D) is able to overcome the stage where cytochrome c oxidase assembly links to the feedback regulation of mitochondrial Cox1 expression. However, Shy1(Y344D) impairs the assembly at later steps, most apparent at low temperature and exhibits a dominant-negative phenotype upon overexpression. Thus, exchanging the conserved tyrosine (Y-344) with aspartate in yeast uncouples translational regulation of Cox1 from cytochrome c oxidase assembly and provides evidence for the dual functionality of Shy1."],["dc.identifier.doi","10.1093/hmg/ddr145"],["dc.identifier.gro","3142715"],["dc.identifier.isi","000290849200008"],["dc.identifier.pmid","21470975"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/150"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1460-2083"],["dc.relation.issn","0964-6906"],["dc.title","Mimicking a SURF1 allele reveals uncoupling of cytochrome c oxidase assembly from translational regulation in yeast"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1528"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","1541"],["dc.bibliographiccitation.volume","151"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Wiese, Heike"],["dc.contributor.author","Reinhold, Robert"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Sasarman, Florin"],["dc.contributor.author","Weraarpachai, Woranontee"],["dc.contributor.author","Shoubridge, Eric A."],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:48:20Z"],["dc.date.available","2017-09-07T11:48:20Z"],["dc.date.issued","2012"],["dc.description.abstract","Mitochondrial respiratory-chain complexes assemble from subunits of dual genetic origin assisted by specialized assembly factors. Whereas core subunits are translated on mitochondrial ribosomes, others are imported after cytosolic translation. How imported subunits are ushered to assembly intermediates containing mitochondria-encoded subunits is unresolved. Here, we report a comprehensive dissection of early cytochrome c oxidase assembly intermediates containing proteins required for normal mitochondrial translation and reveal assembly factors promoting biogenesis of human respiratory-chain complexes. We find that TIM21, a subunit of the inner-membrane presequence translocase, is also present in the major assembly intermediates containing newly mitochondria-synthesized and imported respiratory-chain subunits, which we term MITRAC complexes. Human TIM21 is dispensable for protein import but required for integration of early-assembling, presequence-containing subunits into respiratory-chain intermediates. We establish an unexpected molecular link between the TIM23 transport machinery and assembly of respiratory-chain complexes that regulate mitochondrial protein synthesis in response to their assembly state."],["dc.identifier.doi","10.1016/j.cell.2012.11.053"],["dc.identifier.gro","3142426"],["dc.identifier.isi","000312890300017"],["dc.identifier.pmid","23260140"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8152"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0092-8674"],["dc.title","MITRAC Links Mitochondrial Protein Translocation to Respiratory-Chain Assembly and Translational Regulation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS