Now showing 1 - 9 of 9
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","e01719"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Ecosphere"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Cortois, Roeland"],["dc.contributor.author","Veen, Gerhard"],["dc.contributor.author","Duyts, Henk"],["dc.contributor.author","Abbas, Maike"],["dc.contributor.author","Strecker, Tanja"],["dc.contributor.author","Kostenko, Olga"],["dc.contributor.author","Eisenhauer, Nico"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Gleixner, Gerd"],["dc.contributor.author","De Deyn, Gerlinde B."],["dc.contributor.author","van der Putten, Wim H."],["dc.date.accessioned","2018-11-07T10:24:07Z"],["dc.date.available","2018-11-07T10:24:07Z"],["dc.date.issued","2017"],["dc.description.abstract","Plant diversity is known to influence the abundance and diversity of belowground biota; however, patterns are not well predictable and there is still much unknown about the driving mechanisms. We analyzed changes in soil nematode community composition as affected by long-term manipulations of plant species and functional group diversity in a field experiment with plant species diversity controlled by sowing a range of 1-60 species mixtures and controlling non-sown species by hand weeding. Nematode communities contain a variety of species feeding on bacteria, fungi, plants, invertebrates, while some are omnivorous. We analyzed responses of nematode abundance and diversity to plant species and functional diversity, and used structural equation modeling (SEM) to explore the possible mechanisms underlying the observed patterns. The abundance of individuals of all nematode feeding types, except for predatory nematodes, increased with both plant species and plant functional group diversity. The abundance of microbial-feeding nematodes was related positively to aboveground plant community biomass, whereas abundance of plant-feeding nematodes was related positively to shoot C:N ratio. The abundance of predatory nematodes, in turn, was positively related to numbers of plant-feeding nematodes, but not to the abundance of microbial feeders. Interestingly, the numbers of plant-feeding nematodes per unit root mass were lowest in the high-diversity plant communities, pointing at reduced exposure to belowground herbivores when plants grow in species-diverse communities. Taxon richness of plant-feeding and microbial-feeding nematodes increased with plant species and plant functional group diversity. Increasing plant functional group diversity also enhanced taxon richness of predatory nematodes. The SEM suggests that bottom-up control effects of plant species and plant functional group diversity on abundance of nematodes in the various feeding types predominantly involve mechanistic linkages related to plant quality instead of plant quantity; especially, C:N ratios of the shoot tissues, and/or effects of plants on the soil habitat, rather than shoot quantity explained nematode abundance. Although aboveground plant properties may only partly serve as a proxy for belowground resource quality and quantity, our results encourage further studies on nematode responses to variations in plant species and plant functional diversity in relation to both quantity and quality of the belowground resources."],["dc.identifier.doi","10.1002/ecs2.1719"],["dc.identifier.isi","000402472300025"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14961"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42598"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley"],["dc.relation.issn","2150-8925"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","UNSP e0125678"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Strecker, Tanja"],["dc.contributor.author","Barnard, Romain L."],["dc.contributor.author","Niklaus, Pascal A."],["dc.contributor.author","Scherer-Lorenzen, Michael"],["dc.contributor.author","Weigelt, Alexandra"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Eisenhauer, Nico"],["dc.date.accessioned","2018-11-07T09:57:22Z"],["dc.date.available","2018-11-07T09:57:22Z"],["dc.date.issued","2015"],["dc.description.abstract","Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes."],["dc.description.sponsorship","Open-Access Publikationsfonds 2015"],["dc.identifier.doi","10.1371/journal.pone.0125678"],["dc.identifier.isi","000353943000090"],["dc.identifier.pmid","25938580"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11820"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/37141"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Effects of Plant Diversity, Functional Group Composition, and Fertilization on Soil Microbial Properties in Experimental Grassland"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","e01619"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Ecosphere"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Meyer, Sebastian T."],["dc.contributor.author","Ebeling, Anne"],["dc.contributor.author","Eisenhauer, Nico"],["dc.contributor.author","Hertzog, Lionel"],["dc.contributor.author","Hillebrand, Helmut"],["dc.contributor.author","Milcu, Alexandru"],["dc.contributor.author","Pompe, Sven"],["dc.contributor.author","Abbas, Maike"],["dc.contributor.author","Bessler, Holger"],["dc.contributor.author","Buchmann, Nina"],["dc.contributor.author","Luca, Enrica de"],["dc.contributor.author","Engels, Christof"],["dc.contributor.author","Fischer, Markus"],["dc.contributor.author","Gleixner, Gerd"],["dc.contributor.author","Hudewenz, Anika"],["dc.contributor.author","Klein, Alexandra-Maria"],["dc.contributor.author","Kroon, Hans de"],["dc.contributor.author","Leimer, Sophia"],["dc.contributor.author","Loranger, Hannah"],["dc.contributor.author","Mommer, Liesje"],["dc.contributor.author","Oelmann, Yvonne"],["dc.contributor.author","Ravenek, Janneke M."],["dc.contributor.author","Roscher, Christiane"],["dc.contributor.author","Rottstock, Tanja"],["dc.contributor.author","Scherber, Christoph"],["dc.contributor.author","Scherer-Lorenzen, Michael"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Schmid, Bernhard"],["dc.contributor.author","Schulze, Ernst-Detlef"],["dc.contributor.author","Staudler, Andrea"],["dc.contributor.author","Strecker, Tanja"],["dc.contributor.author","Temperton, Vicky"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Vogel, Anja"],["dc.contributor.author","Voigt, Winfried"],["dc.contributor.author","Weigelt, Alexandra"],["dc.contributor.author","Wilcke, Wolfgang"],["dc.contributor.author","Weisser, Wolfgang W."],["dc.date.accessioned","2017-09-07T11:54:46Z"],["dc.date.available","2017-09-07T11:54:46Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1002/ecs2.1619"],["dc.identifier.gro","3150091"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14122"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/6821"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.relation.issn","2150-8925"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.title","Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","44641"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Eisenhauer, Nico"],["dc.contributor.author","Lanoue, Arnaud"],["dc.contributor.author","Strecker, Tanja"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Steinauer, Katja"],["dc.contributor.author","Thakur, Madhav Prakash"],["dc.contributor.author","Mommer, Liesje"],["dc.date.accessioned","2018-11-07T10:25:07Z"],["dc.date.available","2018-11-07T10:25:07Z"],["dc.date.issued","2017"],["dc.description.abstract","Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that the quantity and diversity of root inputs into the soil, i.e. though root exudates, drive plant diversity effects on soil biota. Here we used a microcosm experiment to study the role of plant species richness on the biomass of soil bacteria and fungi as well as fungal-to-bacterial ratio via root biomass and root exudates. Plant diversity significantly increased shoot biomass, root biomass, the amount of root exudates, bacterial biomass, and fungal biomass. Fungal biomass increased most with increasing plant diversity resulting in a significant shift in the fungal-to-bacterial biomass ratio at high plant diversity. Fungal biomass increased significantly with plant diversity-induced increases in root biomass and the amount of root exudates. These results suggest that plant diversity enhances soil microbial biomass, particularly soil fungi, by increasing root-derived organic inputs."],["dc.identifier.doi","10.1038/srep44641"],["dc.identifier.isi","000398165100001"],["dc.identifier.pmid","28374800"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14472"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42789"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Root biomass and exudates link plant diversity with soil bacterial and fungal biomass"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","4295"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Ecology and Evolution"],["dc.bibliographiccitation.lastpage","4309"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Strecker, Tanja"],["dc.contributor.author","Jesch, Annette"],["dc.contributor.author","Bachmann, Dörte"],["dc.contributor.author","Jüds, Melissa"],["dc.contributor.author","Karbstein, Kevin"],["dc.contributor.author","Ravenek, Janneke"],["dc.contributor.author","Roscher, Christiane"],["dc.contributor.author","Weigelt, Alexandra"],["dc.contributor.author","Eisenhauer, Nico"],["dc.contributor.author","Scheu, Stefan"],["dc.date.accessioned","2021-04-14T08:29:27Z"],["dc.date.available","2021-04-14T08:29:27Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Although nitrogen (N) deposition is increasing globally, N availability still limits many organisms, such as microorganisms and mesofauna. However, little is known to which extent soil organisms rely on mineral‐derived N and whether plant community composition modifies its incorporation into soil food webs. More diverse plant communities more effectively compete with microorganisms for mineral N likely reducing the incorporation of mineral‐derived N into soil food webs. We set up a field experiment in experimental grasslands with different levels of plant species and functional group richness. We labeled soil with 15NH415NO3 and analyzed the incorporation of mineral‐derived 15N into soil microorganisms and mesofauna over 3 months. Mineral‐derived N incorporation decreased over time in all investigated organisms. Plant species richness and presence of legumes reduced the uptake of mineral‐derived N into microorganisms. In parallel, the incorporation of mineral‐derived 15N into mesofauna species declined with time and decreased with increasing plant species richness in the secondary decomposer springtail Ceratophysella sp. Effects of both plant species richness and functional group richness on other mesofauna species varied with time. The presence of grasses increased the 15N incorporation into Ceratophysella sp., but decreased it in the primary decomposer oribatid mite Tectocepheus velatus sarekensis. The results highlight that mineral N is quickly channeled into soil animal food webs via microorganisms irrespective of plant diversity. The amount of mineral‐derived N incorporated into soil animals, and the plant community properties affecting this incorporation, differed markedly between soil animal taxa, reflecting species‐specific use of food resources. Our results highlight that plant diversity and community composition alter the competition for N in soil and change the transfer of N across trophic levels in soil food webs, potentially leading to changes in soil animal population dynamics and community composition. Sustaining high plant diversity may buffer detrimental effects of elevated N deposition on soil biota."],["dc.description.abstract","Soil mineral nitrogen is incorporated quickly into microorganisms and higher trophic levels of the soil food web. Incorporation is not affected by plant species richness, but by plant community composition with legumes diluting the incorporation of soil mineral nitrogen. This highlights that plant community composition alters the competition for nitrogen in soil and changes nitrogen transfer across trophic levels in soil food webs, potentially leading to changes in soil animal population dynamics and community composition. image"],["dc.description.sponsorship","German Research Foundation (DFG)"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1002/ece3.7325"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82906"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","2045-7758"],["dc.relation.issn","2045-7758"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.title","Incorporation of mineral nitrogen into the soil food web as affected by plant community composition"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2016Journal Article
    [["dc.bibliographiccitation.artnumber","19"],["dc.bibliographiccitation.journal","BMC Ecology"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Steinauer, Katja"],["dc.contributor.author","Jensen, Britta"],["dc.contributor.author","Strecker, Tanja"],["dc.contributor.author","de Luca, Enrica"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Eisenhauer, Nico"],["dc.date.accessioned","2018-11-07T10:15:36Z"],["dc.date.available","2018-11-07T10:15:36Z"],["dc.date.issued","2016"],["dc.description.abstract","Background: Several studies have examined the effects of plant colonization on aboveground communities and processes. However, the effects of plant colonization on soil microbial communities are less known. We addressed this gap by studying effects of plant colonization within an experimental plant diversity gradient in subplots that had not been weeded for 2 and 5 years. This study was part of a long-term grassland biodiversity experiment (Jena Experiment) with a gradient in plant species richness (1, 2, 4, 8, 16, and 60 sown species per plot). We measured plant species richness and productivity (aboveground cover and biomass) as well as soil microbial basal respiration and biomass in non-weeded subplots and compared the results with those of weeded subplots of the same plots. Results: After 2 and 5 years of plant colonization, the number of colonizing plant species decreased with increasing plant diversity, i.e., low-diversity plant communities were most vulnerable to colonization. Plant colonization offset the significant relationship between sown plant diversity and plant biomass production. In line with plant community responses, soil basal respiration and microbial biomass increased with increasing sown plant diversity in weeded subplots, but soil microbial properties converged in non-weeded subplots and were not significantly affected by the initial plant species richness gradient. Conclusion: Colonizing plant species change the quantity and quality of inputs to the soil, thereby altering soil microbial properties. Thus, plant community convergence is likely to be rapidly followed by the convergence of microbial properties in the soil."],["dc.identifier.doi","10.1186/s12898-016-0073-0"],["dc.identifier.isi","000373585600001"],["dc.identifier.pmid","27056681"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13182"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40842"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Biomed Central Ltd"],["dc.relation.issn","1472-6785"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Convergence of soil microbial properties after plant colonization of an experimental plant diversity gradient"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","1284"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Ecology"],["dc.bibliographiccitation.lastpage","1297"],["dc.bibliographiccitation.volume","109"],["dc.contributor.author","Lange, Markus"],["dc.contributor.author","Roth, Vanessa‐Nina"],["dc.contributor.author","Eisenhauer, Nico"],["dc.contributor.author","Roscher, Christiane"],["dc.contributor.author","Dittmar, Thorsten"],["dc.contributor.author","Fischer‐Bedtke, Christine"],["dc.contributor.author","González Macé, Odette"],["dc.contributor.author","Hildebrandt, Anke"],["dc.contributor.author","Milcu, Alexandru"],["dc.contributor.author","Mommer, Liesje"],["dc.contributor.author","Oram, Natalie J."],["dc.contributor.author","Ravenek, Janneke"],["dc.contributor.author","Scheu, Stefan"],["dc.contributor.author","Schmid, Bernhard"],["dc.contributor.author","Strecker, Tanja"],["dc.contributor.author","Wagg, Cameron"],["dc.contributor.author","Weigelt, Alexandra"],["dc.contributor.author","Gleixner, Gerd"],["dc.contributor.editor","de Vries, Franciska"],["dc.date.accessioned","2021-04-14T08:24:16Z"],["dc.date.available","2021-04-14T08:24:16Z"],["dc.date.issued","2020"],["dc.description.abstract","Abstract Plant diversity is an important driver of below‐ground ecosystem functions, such as root growth, soil organic matter (SOM) storage and microbial metabolism, mainly by influencing the interactions between plant roots and soil. Dissolved organic matter (DOM), as the most mobile form of SOM, plays a crucial role for a multitude of soil processes that are central for ecosystem functioning. Thus, DOM is likely to be an important mediator of plant diversity effects on soil processes. However, the relationships between plant diversity and DOM have not been studied so far. We investigated the mechanisms underlying plant diversity effects on concentrations of DOM using continuous soil water sampling across 6 years and 62 plant communities in a long‐term grassland biodiversity experiment in Jena, Germany. Furthermore, we investigated plant diversity effects on the molecular properties of DOM in a subset of the samples. Although DOM concentrations were highly variable over the course of the year with highest concentrations in summer and autumn, we found that DOM concentrations consistently increased with plant diversity across seasons. The positive plant diversity effect on DOM concentrations was mainly mediated by increased microbial activity and newly sequestered carbon in topsoil. However, the effect of soil microbial activity on DOM concentrations differed between seasons, indicating DOM consumption in winter and spring, and DOM production in summer and autumn. Furthermore, we found increased contents of small and easily decomposable DOM molecules reaching deeper soil layers with high plant diversity. Synthesis. Our findings suggest that plant diversity enhances the continuous downward transport of DOM in multiple ways. On the one hand, higher plant diversity results in higher DOM concentrations, on the other hand, this DOM is less degraded. This study indicates, for the first time, that higher plant diversity enhances the downward transport of dissolved molecules that likely stimulate soil development in deeper layers and therefore increase soil fertility."],["dc.description.abstract","We investigated the mechanisms underlying plant diversity effects on concentrations and molecular properties of dissolved organic matter using continuous soil water sampling across several years and 62 plant communities in a long‐term grassland biodiversity experiment. Our study shows that plant diversity enhances the downward transport of dissolved molecules that stimulate soil development in deeper layers and therefore increase soil fertility. image"],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.identifier.doi","10.1111/1365-2745.13556"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81222"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1365-2745"],["dc.relation.issn","0022-0477"],["dc.rights","This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited."],["dc.title","Plant diversity enhances production and downward transport of biodegradable dissolved organic matter"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","e0116367"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Bachmann, Doerte"],["dc.contributor.author","Gockele, Annette"],["dc.contributor.author","Ravenek, Janneke M."],["dc.contributor.author","Roscher, Christiane"],["dc.contributor.author","Strecker, Tanja"],["dc.contributor.author","Weigelt, Alexandra"],["dc.contributor.author","Buchmann, Nina"],["dc.date.accessioned","2018-11-07T10:02:12Z"],["dc.date.available","2018-11-07T10:02:12Z"],["dc.date.issued","2015"],["dc.description.abstract","Niche complementarity in resource use has been proposed as a key mechanism to explain the positive effects of increasing plant species richness on ecosystem processes, in particular on primary productivity. Since hardly any information is available for niche complementarity in water use, we tested the effects of plant diversity on spatial and temporal complementarity in water uptake in experimental grasslands by using stable water isotopes. We hypothesized that water uptake from deeper soil depths increases in more diverse compared to low diverse plant species mixtures. We labeled soil water in 8 cm (with O-18) and 28 cm depth (with H-2) three times during the 2011 growing season in 40 temperate grassland communities of varying species richness (2, 4, 8 and 16 species) and functional group number and composition (legumes, grasses, tall herbs, small herbs). Stable isotope analyses of xylem and soil water allowed identifying the preferential depth of water uptake. Higher enrichment in 18O of xylem water than in H-2 suggested that the main water uptake was in the upper soil layer. Furthermore, our results revealed no differences in root water uptake among communities with different species richness, different number of functional groups or with time. Thus, our results do not support the hypothesis of increased complementarity in water use in more diverse than in less diverse communities of temperate grassland species."],["dc.identifier.doi","10.1371/journal.pone.0116367"],["dc.identifier.isi","000347928300011"],["dc.identifier.pmid","25587998"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11435"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/38181"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","No Evidence of Complementary Water Use along a Plant Species Richness Gradient in Temperate Experimental Grasslands"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","e0204715"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","PlOS ONE"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Roscher, Christiane"],["dc.contributor.author","Karlowsky, Stefan"],["dc.contributor.author","Milcu, Alexandru"],["dc.contributor.author","Gessler, Arthur"],["dc.contributor.author","Bachmann, Dörte"],["dc.contributor.author","Jesch, Annette"],["dc.contributor.author","Lange, Markus"],["dc.contributor.author","Mellado-Vázquez, Perla"],["dc.contributor.author","Strecker, Tanja"],["dc.contributor.author","Landais, Damien"],["dc.contributor.author","Ravel, Olivier"],["dc.contributor.author","Buchmann, Nina"],["dc.contributor.author","Roy, Jacques"],["dc.contributor.author","Gleixner, Gerd"],["dc.date.accessioned","2019-07-09T11:50:18Z"],["dc.date.available","2019-07-09T11:50:18Z"],["dc.date.issued","2019"],["dc.description.abstract","Numerous experiments have shown positive diversity effects on plant productivity, but little is known about related processes of carbon gain and allocation. We investigated these processes in a controlled environment (Montpellier European Ecotron) applying a continuous 13CO2 label for three weeks to 12 soil-vegetation monoliths originating from a grassland biodiversity experiment (Jena Experiment) and representing two diversity levels (4 and 16 sown species). Plant species richness did not affect community- and species-level 13C abundances neither in total biomass nor in non-structural carbohydrates (NSC). Community-level 13C excess tended to be higher in the 16-species than in the 4-species mixtures. Community-level 13C excess was positively related to canopy leaf nitrogen (N), i.e. leaf N per unit soil surface. At the species level, shoot 13C abundances varied among plant functional groups and were larger in legumes and tall herbs than in grasses and small herbs, and correlated positively with traits as leaf N concentrations, stomatal conductance and shoot height. The 13C abundances in NSC were larger in transport sugars (sucrose, raffinose-family oligosaccharides) than in free glucose, fructose and compounds of the storage pool (starch) suggesting that newly assimilated carbon is to a small portion allocated to storage. Our results emphasize that the functional composition of communities is key in explaining carbon assimilation in grasslands."],["dc.identifier.doi","10.1371/journal.pone.0204715"],["dc.identifier.pmid","30703101"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15907"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59744"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","570"],["dc.title","Functional composition has stronger impact than species richness on carbon gain and allocation in experimental grasslands"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC