Options
Hillen, Hauke S.
Loading...
Preferred name
Hillen, Hauke S.
Official Name
Hillen, Hauke S.
Alternative Name
Hillen, H. S.
Hillen, H.
Main Affiliation
Now showing 1 - 3 of 3
2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","713"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","723"],["dc.bibliographiccitation.volume","28"],["dc.contributor.author","Bhatta, Arjun"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Cramer, Patrick"],["dc.contributor.author","Hillen, Hauke S."],["dc.date.accessioned","2021-10-01T09:57:57Z"],["dc.date.available","2021-10-01T09:57:57Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Human mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria."],["dc.identifier.doi","10.1038/s41594-021-00637-y"],["dc.identifier.pii","637"],["dc.identifier.pmid","34489609"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89952"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/337"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/154"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/9"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","1545-9985"],["dc.relation.issn","1545-9993"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","Structural basis of RNA processing by human mitochondrial RNase P"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","279"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Tegunov, Dimitry"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Seitz, Florian"],["dc.contributor.author","Schmitzova, Jana"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Siewert, Aaron"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-08-12T07:44:55Z"],["dc.date.available","2021-08-12T07:44:55Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Remdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryo-electron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3ʹ-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3ʹ-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3ʹ-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication."],["dc.identifier.doi","10.1038/s41467-020-20542-0"],["dc.identifier.pii","20542"],["dc.identifier.pmid","33436624"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88330"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/113"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/17"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","Mechanism of SARS-CoV-2 polymerase stalling by remdesivir"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","999"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Communications Biology"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Jochheim, Florian A."],["dc.contributor.author","Tegunov, Dimitry"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Schmitzová, Jana"],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-10-01T09:57:46Z"],["dc.date.available","2021-10-01T09:57:46Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to replicate and transcribe its genome. Previous structures of the RdRp revealed a monomeric enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve its structure at 5.5 Å resolution. In this structure, the two RdRps contain only one copy of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement. We speculate that the RdRp dimer facilitates template switching during production of sub-genomic RNAs."],["dc.identifier.doi","10.1038/s42003-021-02529-9"],["dc.identifier.pii","2529"],["dc.identifier.pmid","34429502"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89909"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/334"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/153"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/10"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","2399-3642"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","The structure of a dimeric form of SARS-CoV-2 polymerase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC