Options
Hillen, Hauke S.
Loading...
Preferred name
Hillen, Hauke S.
Official Name
Hillen, Hauke S.
Alternative Name
Hillen, H. S.
Hillen, H.
Main Affiliation
Now showing 1 - 4 of 4
2017Journal Article [["dc.bibliographiccitation.firstpage","1082"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","1093"],["dc.bibliographiccitation.volume","171"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Parshin, Andrey V."],["dc.contributor.author","Agaronyan, Karen"],["dc.contributor.author","Morozov, Yaroslav I."],["dc.contributor.author","Graber, James J."],["dc.contributor.author","Chernev, Aleksandar"],["dc.contributor.author","Schwinghammer, Kathrin"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Anikin, Michael"],["dc.contributor.author","Cramer, Patrick"],["dc.contributor.author","Temiakov, Dmitry"],["dc.date.accessioned","2018-01-09T12:26:24Z"],["dc.date.available","2018-01-09T12:26:24Z"],["dc.date.issued","2017"],["dc.description.abstract","In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream \"sliding clamp,\" providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA."],["dc.identifier.doi","10.1016/j.cell.2017.09.035"],["dc.identifier.pmid","29033127"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11586"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1097-4172"],["dc.title","Mechanism of Transcription Anti-termination in Human Mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article [["dc.bibliographiccitation.firstpage","754"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","765"],["dc.bibliographiccitation.volume","25"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Temiakov, Dmitry"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2022-03-01T11:46:02Z"],["dc.date.available","2022-03-01T11:46:02Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1038/s41594-018-0122-9"],["dc.identifier.pii","122"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103537"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1545-9985"],["dc.relation.issn","1545-9993"],["dc.rights.uri","http://www.springer.com/tdm"],["dc.title","Structural basis of mitochondrial transcription"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","1072"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","1081"],["dc.bibliographiccitation.volume","171"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Morozov, Yaroslav I."],["dc.contributor.author","Sarfallah, Azadeh"],["dc.contributor.author","Temiakov, Dmitry"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2018-01-09T11:46:57Z"],["dc.date.available","2018-01-09T11:46:57Z"],["dc.date.issued","2017"],["dc.description.abstract","Transcription in human mitochondria is driven by a single-subunit, factor-dependent RNA polymerase (mtRNAP). Despite its critical role in both expression and replication of the mitochondrial genome, transcription initiation by mtRNAP remains poorly understood. Here, we report crystal structures of human mitochondrial transcription initiation complexes assembled on both light and heavy strand promoters. The structures reveal how transcription factors TFAM and TFB2M assist mtRNAP to achieve promoter-dependent initiation. TFAM tethers the N-terminal region of mtRNAP to recruit the polymerase to the promoter whereas TFB2M induces structural changes in mtRNAP to enable promoter opening and trapping of the DNA non-template strand. Structural comparisons demonstrate that the initiation mechanism in mitochondria is distinct from that in the well-studied nuclear, bacterial, or bacteriophage transcription systems but that similarities are found on the topological and conceptual level. These results provide a framework for studying the regulation of gene expression and DNA replication in mitochondria."],["dc.identifier.doi","10.1016/j.cell.2017.10.036"],["dc.identifier.pmid","29149603"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11582"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.eissn","1097-4172"],["dc.title","Structural Basis of Mitochondrial Transcription Initiation"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","e2009329118"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.volume","118"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Markov, Dmitriy A."],["dc.contributor.author","Wojtas, Ireneusz D."],["dc.contributor.author","Hofmann, Katharina B."],["dc.contributor.author","Lidschreiber, Michael"],["dc.contributor.author","Cowan, Andrew T."],["dc.contributor.author","Jones, Julia L."],["dc.contributor.author","Temiakov, Dmitry"],["dc.contributor.author","Cramer, Patrick"],["dc.contributor.author","Anikin, Michael"],["dc.date.accessioned","2021-06-01T09:41:49Z"],["dc.date.available","2021-06-01T09:41:49Z"],["dc.date.issued","2021"],["dc.description.abstract","Stabilization of messenger RNA is an important step in posttranscriptional gene regulation. In the nucleus and cytoplasm of eukaryotic cells it is generally achieved by 5′ capping and 3′ polyadenylation, whereas additional mechanisms exist in bacteria and organelles. The mitochondrial mRNAs in the yeast Saccharomyces cerevisiae comprise a dodecamer sequence element that confers RNA stability and 3′-end processing via an unknown mechanism. Here, we isolated the protein that binds the dodecamer and identified it as Rmd9, a factor that is known to stabilize yeast mitochondrial RNA. We show that Rmd9 associates with mRNA around dodecamer elements in vivo and that recombinant Rmd9 specifically binds the element in vitro. The crystal structure of Rmd9 bound to its dodecamer target reveals that Rmd9 belongs to the family of pentatricopeptide (PPR) proteins and uses a previously unobserved mode of specific RNA recognition. Rmd9 protects RNA from degradation by the mitochondrial 3′-exoribonuclease complex mtEXO in vitro, indicating that recognition and binding of the dodecamer element by Rmd9 confers stability to yeast mitochondrial mRNAs."],["dc.identifier.doi","10.1073/pnas.2009329118"],["dc.identifier.pmid","33876744"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85051"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/248"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/143"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/14"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.title","The pentatricopeptide repeat protein Rmd9 recognizes the dodecameric element in the 3′-UTRs of yeast mitochondrial mRNAs"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC