Options
Hillen, Hauke S.
Loading...
Preferred name
Hillen, Hauke S.
Official Name
Hillen, Hauke S.
Alternative Name
Hillen, H. S.
Hillen, H.
Main Affiliation
Now showing 1 - 9 of 9
2021Journal Article Research Paper [["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.contributor.author","Kabinger, Florian"],["dc.contributor.author","Stiller, Carina"],["dc.contributor.author","Schmitzová, Jana"],["dc.contributor.author","Dienemann, C."],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-09-01T06:42:22Z"],["dc.date.available","2021-09-01T06:42:22Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Molnupiravir is an orally available antiviral drug candidate currently in phase III trials for the treatment of patients with COVID-19. Molnupiravir increases the frequency of viral RNA mutations and impairs SARS-CoV-2 replication in animal models and in humans. Here, we establish the molecular mechanisms underlying molnupiravir-induced RNA mutagenesis by the viral RNA-dependent RNA polymerase (RdRp). Biochemical assays show that the RdRp uses the active form of molnupiravir, β- d - N 4 -hydroxycytidine (NHC) triphosphate, as a substrate instead of cytidine triphosphate or uridine triphosphate. When the RdRp uses the resulting RNA as a template, NHC directs incorporation of either G or A, leading to mutated RNA products. Structural analysis of RdRp–RNA complexes that contain mutagenesis products shows that NHC can form stable base pairs with either G or A in the RdRp active center, explaining how the polymerase escapes proofreading and synthesizes mutated RNA. This two-step mutagenesis mechanism probably applies to various viral polymerases and can explain the broad-spectrum antiviral activity of molnupiravir."],["dc.identifier.doi","10.1038/s41594-021-00651-0"],["dc.identifier.pii","651"],["dc.identifier.pmid","34381216"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89038"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/381"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/171"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/28"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","1545-9985"],["dc.relation.issn","1545-9993"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","Mechanism of molnupiravir-induced SARS-CoV-2 mutagenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022Journal Article Overview [["dc.bibliographiccitation.firstpage","965"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Trends in Biochemical Sciences"],["dc.bibliographiccitation.lastpage","977"],["dc.bibliographiccitation.volume","47"],["dc.contributor.author","Bhatta, Arjun"],["dc.contributor.author","Hillen, Hauke S."],["dc.date.accessioned","2022-12-01T08:30:44Z"],["dc.date.available","2022-12-01T08:30:44Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/501100001659 Deutsche Forschungsgemeinschaft"],["dc.identifier.doi","10.1016/j.tibs.2022.05.006"],["dc.identifier.pii","S0968000422001396"],["dc.identifier.pmid","35725940"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/117964"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/177"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/507"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/33"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.issn","0968-0004"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Structural and mechanistic basis of RNA processing by protein-only ribonuclease P enzymes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2022-07-21Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1454"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Human Mutation"],["dc.bibliographiccitation.lastpage","1471"],["dc.bibliographiccitation.volume","43"],["dc.contributor.affiliation","Bögershausen, Nina; 1\r\nInstitute of Human Genetics\r\nUniversity Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Krawczyk, Hannah E.; 1\r\nInstitute of Human Genetics\r\nUniversity Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Jamra, Rami A.; 2\r\nInstitute of Human Genetics\r\nUniversity of Leipzig Medical Center\r\nLeipzig Germany"],["dc.contributor.affiliation","Lin, Sheng‐Jia; 3\r\nGenes & Human Disease Research Program\r\nOklahoma Medical Research Foundation\r\nOklahoma City Oklahoma USA"],["dc.contributor.affiliation","Yigit, Gökhan; 1\r\nInstitute of Human Genetics\r\nUniversity Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Hüning, Irina; 4\r\nInstitut für Humangenetik\r\nUniversitätsklinikum Schleswig‐Holstein\r\nLübeck Germany"],["dc.contributor.affiliation","Polo, Anna M.; 5\r\nMVZ Labor Krone\r\nFilialpraxis für Humangenetik\r\nBielefeld Germany"],["dc.contributor.affiliation","Vona, Barbara; 1\r\nInstitute of Human Genetics\r\nUniversity Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Huang, Kevin; 3\r\nGenes & Human Disease Research Program\r\nOklahoma Medical Research Foundation\r\nOklahoma City Oklahoma USA"],["dc.contributor.affiliation","Schmidt, Julia; 1\r\nInstitute of Human Genetics\r\nUniversity Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Altmüller, Janine; 7\r\nCologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne\r\nUniversity of Cologne\r\nCologne Germany"],["dc.contributor.affiliation","Luppe, Johannes; 2\r\nInstitute of Human Genetics\r\nUniversity of Leipzig Medical Center\r\nLeipzig Germany"],["dc.contributor.affiliation","Platzer, Konrad; 2\r\nInstitute of Human Genetics\r\nUniversity of Leipzig Medical Center\r\nLeipzig Germany"],["dc.contributor.affiliation","Dörgeloh, Beate B.; 10\r\nDepartment of Pediatric Hematology and Oncology\r\nHannover Medical School\r\nHannover Germany"],["dc.contributor.affiliation","Busche, Andreas; 11\r\nInstitut für Humangenetik\r\nWestfälische Wilhelms‐Universität Münster\r\nMünster Germany"],["dc.contributor.affiliation","Biskup, Saskia; 12\r\nCeGaT GmbH\r\nCenter for Genomics and Transcriptomics\r\nTübingen Germany"],["dc.contributor.affiliation","Mendes, Marisa I.; 13\r\nLaboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Neuroscience\r\nAmsterdam UMC\r\nAmsterdam Netherlands"],["dc.contributor.affiliation","Smith, Desiree E. C.; 13\r\nLaboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Neuroscience\r\nAmsterdam UMC\r\nAmsterdam Netherlands"],["dc.contributor.affiliation","Salomons, Gajja S.; 13\r\nLaboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Neuroscience\r\nAmsterdam UMC\r\nAmsterdam Netherlands"],["dc.contributor.affiliation","Zibat, Arne; 1\r\nInstitute of Human Genetics\r\nUniversity Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Bültmann, Eva; 14\r\nInstitute of Diagnostic and Interventional Neuroradiology\r\nHannover Medical School\r\nHannover Germany"],["dc.contributor.affiliation","Nürnberg, Peter; 7\r\nCologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne\r\nUniversity of Cologne\r\nCologne Germany"],["dc.contributor.affiliation","Spielmann, Malte; 4\r\nInstitut für Humangenetik\r\nUniversitätsklinikum Schleswig‐Holstein\r\nLübeck Germany"],["dc.contributor.affiliation","Lemke, Johannes R.; 2\r\nInstitute of Human Genetics\r\nUniversity of Leipzig Medical Center\r\nLeipzig Germany"],["dc.contributor.affiliation","Li, Yun; 1\r\nInstitute of Human Genetics\r\nUniversity Medical Center Göttingen\r\nGöttingen Germany"],["dc.contributor.affiliation","Zenker, Martin; 16\r\nInstitute of Human Genetics\r\nOtto‐von‐Guericke University Magdeburg\r\nMagdeburg Germany"],["dc.contributor.affiliation","Varshney, Gaurav K.; 3\r\nGenes & Human Disease Research Program\r\nOklahoma Medical Research Foundation\r\nOklahoma City Oklahoma USA"],["dc.contributor.affiliation","Hillen, Hauke S.; 17\r\nResearch Group Structure and Function of Molecular Machines\r\nMax Planck Institute for Multidisciplinary Sciences\r\nGöttingen Germany"],["dc.contributor.affiliation","Kratz, Christian P.; 10\r\nDepartment of Pediatric Hematology and Oncology\r\nHannover Medical School\r\nHannover Germany"],["dc.contributor.author","Bögershausen, Nina"],["dc.contributor.author","Krawczyk, Hannah E."],["dc.contributor.author","Jamra, Rami A."],["dc.contributor.author","Lin, Sheng‐Jia"],["dc.contributor.author","Yigit, Gökhan"],["dc.contributor.author","Hüning, Irina"],["dc.contributor.author","Polo, Anna M."],["dc.contributor.author","Vona, Barbara"],["dc.contributor.author","Huang, Kevin"],["dc.contributor.author","Schmidt, Julia"],["dc.contributor.author","Altmüller, Janine"],["dc.contributor.author","Luppe, Johannes"],["dc.contributor.author","Platzer, Konrad"],["dc.contributor.author","Dörgeloh, Beate B."],["dc.contributor.author","Busche, Andreas"],["dc.contributor.author","Biskup, Saskia"],["dc.contributor.author","Mendes, Marisa I."],["dc.contributor.author","Smith, Desiree E. C."],["dc.contributor.author","Salomons, Gajja S."],["dc.contributor.author","Zibat, Arne"],["dc.contributor.author","Bültmann, Eva"],["dc.contributor.author","Nürnberg, Peter"],["dc.contributor.author","Spielmann, Malte"],["dc.contributor.author","Lemke, Johannes R."],["dc.contributor.author","Li, Yun"],["dc.contributor.author","Zenker, Martin"],["dc.contributor.author","Varshney, Gaurav K."],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Kratz, Christian P."],["dc.contributor.author","Wollnik, Bernd"],["dc.date.accessioned","2022-11-28T09:45:52Z"],["dc.date.available","2022-11-28T09:45:52Z"],["dc.date.issued","2022-07-21"],["dc.date.updated","2022-11-27T10:11:29Z"],["dc.description.abstract","Based on the identification of novel variants in aminoacyl‐tRNA synthetase (ARS) genes WARS1 and SARS1, the authors define an emerging disease spectrum related to all type 1 ARS genes: aminoacyl‐tRNA synthetase‐related developmental disorders with or without microcephaly (ARS‐DDM).\r\n\r\nimage"],["dc.description.abstract","Aminoacylation of transfer RNA (tRNA) is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARSs). ARSs have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme's active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: ARS-related developmental disorders with or without microcephaly."],["dc.description.sponsorship","Deutsches Zentrum für Herz‐Kreislaufforschung http://dx.doi.org/10.13039/100010447"],["dc.description.sponsorship","Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship","Presbyterian Health Foundation http://dx.doi.org/10.13039/100001298"],["dc.description.sponsorship","University Medical Center Göttingen"],["dc.description.sponsorship","Oklahoma Medical Research Foundation http://dx.doi.org/10.13039/100008907"],["dc.identifier.doi","10.1002/humu.24430"],["dc.identifier.pmid","35790048"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/117321"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/517"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/180"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/34"],["dc.language.iso","en"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","1098-1004"],["dc.relation.issn","1059-7794"],["dc.relation.workinggroup","RG Wollnik"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","WARS1 and SARS1: Two tRNA synthetases implicated in autosomal recessive microcephaly"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Overview [["dc.bibliographiccitation.firstpage","82"],["dc.bibliographiccitation.journal","Current Opinion in Virology"],["dc.bibliographiccitation.lastpage","90"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Hillen, Hauke S."],["dc.date.accessioned","2021-06-01T10:49:31Z"],["dc.date.available","2021-06-01T10:49:31Z"],["dc.date.issued","2021"],["dc.description.abstract","Coronaviruses use an RNA-dependent RNA polymerase (RdRp) to replicate and express their genome. The RdRp associates with additional non-structural proteins (nsps) to form a replication–transcription complex (RTC) that carries out RNA synthesis, capping and proofreading. However, the structure of the RdRp long remained elusive, thus limiting our understanding of coronavirus genome expression and replication. Recently, the cryo-electron microscopy structure of SARS-CoV-1 RdRp was reported. Driven by the ongoing COVID-19 pandemic, structural data on the SARS-CoV-2 polymerase and associated factors has since emerged at an unprecedented pace, with more than twenty structures released to date. This review provides an overview of the currently available coronavirus RdRp structures and outlines how they have, together with functional studies, led to a molecular understanding of the viral polymerase, its interactions with accessory factors and the mechanisms by which promising antivirals may inhibit coronavirus replication."],["dc.identifier.doi","10.1016/j.coviro.2021.03.010"],["dc.identifier.pmid","33945951"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86321"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/247"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/142"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/15"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.issn","1879-6257"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","Structure and function of SARS-CoV-2 polymerase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","3672"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Lavdovskaia, Elena"],["dc.contributor.author","Nadler, Franziska"],["dc.contributor.author","Hanitsch, Elisa"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Bohnsack, Katherine E."],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.date.accessioned","2021-07-05T15:00:30Z"],["dc.date.available","2021-07-05T15:00:30Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint."],["dc.description.sponsorship","Open-Access-Finanzierung durch die Universitätsmedizin Göttingen 2021"],["dc.identifier.doi","10.1038/s41467-021-23702-y"],["dc.identifier.pii","23702"],["dc.identifier.pmid","34135319"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87838"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/316"],["dc.language.iso","en"],["dc.notes.intern","DOI Import DOI-Import GROB-441"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.relation.workinggroup","RG Richter-Dennerlein (Mitoribosome Assembly)"],["dc.rights","CC BY 4.0"],["dc.title","Structural basis of GTPase-mediated mitochondrial ribosome biogenesis and recycling"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","713"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Nature Structural & Molecular Biology"],["dc.bibliographiccitation.lastpage","723"],["dc.bibliographiccitation.volume","28"],["dc.contributor.author","Bhatta, Arjun"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Cramer, Patrick"],["dc.contributor.author","Hillen, Hauke S."],["dc.date.accessioned","2021-10-01T09:57:57Z"],["dc.date.available","2021-10-01T09:57:57Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Human mitochondrial transcripts contain messenger and ribosomal RNAs flanked by transfer RNAs (tRNAs), which are excised by mitochondrial RNase (mtRNase) P and Z to liberate all RNA species. In contrast to nuclear or bacterial RNase P, mtRNase P is not a ribozyme but comprises three protein subunits that carry out RNA cleavage and methylation by unknown mechanisms. Here, we present the cryo-EM structure of human mtRNase P bound to precursor tRNA, which reveals a unique mechanism of substrate recognition and processing. Subunits TRMT10C and SDR5C1 form a subcomplex that binds conserved mitochondrial tRNA elements, including the anticodon loop, and positions the tRNA for methylation. The endonuclease PRORP is recruited and activated through interactions with its PPR and nuclease domains to ensure precise pre-tRNA cleavage. The structure provides the molecular basis for the first step of RNA processing in human mitochondria."],["dc.identifier.doi","10.1038/s41594-021-00637-y"],["dc.identifier.pii","637"],["dc.identifier.pmid","34489609"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89952"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/337"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/154"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/9"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","1545-9985"],["dc.relation.issn","1545-9993"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","Structural basis of RNA processing by human mitochondrial RNase P"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","279"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Tegunov, Dimitry"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Seitz, Florian"],["dc.contributor.author","Schmitzova, Jana"],["dc.contributor.author","Farnung, Lucas"],["dc.contributor.author","Siewert, Aaron"],["dc.contributor.author","Höbartner, Claudia"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-08-12T07:44:55Z"],["dc.date.available","2021-08-12T07:44:55Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Remdesivir is the only FDA-approved drug for the treatment of COVID-19 patients. The active form of remdesivir acts as a nucleoside analog and inhibits the RNA-dependent RNA polymerase (RdRp) of coronaviruses including SARS-CoV-2. Remdesivir is incorporated by the RdRp into the growing RNA product and allows for addition of three more nucleotides before RNA synthesis stalls. Here we use synthetic RNA chemistry, biochemistry and cryo-electron microscopy to establish the molecular mechanism of remdesivir-induced RdRp stalling. We show that addition of the fourth nucleotide following remdesivir incorporation into the RNA product is impaired by a barrier to further RNA translocation. This translocation barrier causes retention of the RNA 3ʹ-nucleotide in the substrate-binding site of the RdRp and interferes with entry of the next nucleoside triphosphate, thereby stalling RdRp. In the structure of the remdesivir-stalled state, the 3ʹ-nucleotide of the RNA product is matched and located with the template base in the active center, and this may impair proofreading by the viral 3ʹ-exonuclease. These mechanistic insights should facilitate the quest for improved antivirals that target coronavirus replication."],["dc.identifier.doi","10.1038/s41467-020-20542-0"],["dc.identifier.pii","20542"],["dc.identifier.pmid","33436624"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/88330"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/113"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/17"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-448"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","Mechanism of SARS-CoV-2 polymerase stalling by remdesivir"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Overview [["dc.bibliographiccitation.journal","Trends in Cell Biology"],["dc.contributor.author","Lavdovskaia, Elena"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Richter-Dennerlein, Ricarda"],["dc.date.accessioned","2021-12-01T09:23:14Z"],["dc.date.available","2021-12-01T09:23:14Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1016/j.tcb.2021.09.004"],["dc.identifier.pii","S0962892421001835"],["dc.identifier.pmid","34635384"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94595"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/351"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/159"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/8"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.issn","0962-8924"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.relation.workinggroup","RG Richter-Dennerlein (Mitoribosome Assembly)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Hierarchical folding of the catalytic core during mitochondrial ribosome biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","999"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Communications Biology"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Jochheim, Florian A."],["dc.contributor.author","Tegunov, Dimitry"],["dc.contributor.author","Hillen, Hauke S."],["dc.contributor.author","Schmitzová, Jana"],["dc.contributor.author","Kokic, Goran"],["dc.contributor.author","Dienemann, Christian"],["dc.contributor.author","Cramer, Patrick"],["dc.date.accessioned","2021-10-01T09:57:46Z"],["dc.date.available","2021-10-01T09:57:46Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract The coronavirus SARS-CoV-2 uses an RNA-dependent RNA polymerase (RdRp) to replicate and transcribe its genome. Previous structures of the RdRp revealed a monomeric enzyme composed of the catalytic subunit nsp12, two copies of subunit nsp8, and one copy of subunit nsp7. Here we report an alternative, dimeric form of the enzyme and resolve its structure at 5.5 Å resolution. In this structure, the two RdRps contain only one copy of nsp8 each and dimerize via their nsp7 subunits to adopt an antiparallel arrangement. We speculate that the RdRp dimer facilitates template switching during production of sub-genomic RNAs."],["dc.identifier.doi","10.1038/s42003-021-02529-9"],["dc.identifier.pii","2529"],["dc.identifier.pmid","34429502"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89909"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/334"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/153"],["dc.identifier.url","https://for2848.gwdguser.de/literature/publications/10"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-469"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","FOR 2848: Architektur und Heterogenität der inneren mitochondrialen Membran auf der Nanoskala"],["dc.relation","FOR 2848 | St01: Structure and distribution of ribosomes at the inner mitochondrial membrane"],["dc.relation.eissn","2399-3642"],["dc.relation.workinggroup","RG Cramer"],["dc.relation.workinggroup","RG Hillen (Structure and Function of Molecular Machines)"],["dc.rights","CC BY 4.0"],["dc.title","The structure of a dimeric form of SARS-CoV-2 polymerase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC