Now showing 1 - 5 of 5
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1539"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biological Reviews"],["dc.bibliographiccitation.lastpage","1569"],["dc.bibliographiccitation.volume","92"],["dc.contributor.author","Dislich, Claudia"],["dc.contributor.author","Keyel, Alexander C."],["dc.contributor.author","Salecker, Jan"],["dc.contributor.author","Kisel, Yael"],["dc.contributor.author","Meyer, Katrin M."],["dc.contributor.author","Auliya, Mark"],["dc.contributor.author","Barnes, Andrew D."],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Darras, Kevin"],["dc.contributor.author","Faust, Heiko"],["dc.contributor.author","Hess, Bastian"],["dc.contributor.author","Klasen, Stephan"],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Meijide, Ana"],["dc.contributor.author","Nurdiansyah, Fuad"],["dc.contributor.author","Otten, Fenna"],["dc.contributor.author","Pe'er, Guy"],["dc.contributor.author","Steinebach, Stefanie"],["dc.contributor.author","Tarigan, Suria"],["dc.contributor.author","Tölle, Merja H."],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Wiegand, Kerstin"],["dc.date.accessioned","2017-09-07T11:44:46Z"],["dc.date.available","2017-09-07T11:44:46Z"],["dc.date.issued","2017"],["dc.description.abstract","Oil palm plantations have expanded rapidly in recent decades. This large-scale land-use change has had great ecological, economic, and social impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm cultivation is scattered and patchy, and no clear overview exists. We address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations, including several (genetic, medicinal and ornamental resources, information functions) not included in previous systematic reviews. We compare ecosystem functions in oil palm plantations to those in forests, as the conversion of forest to oil palm is prevalent in the tropics. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests: 11 out of 14 ecosystem functions show a net decrease in level of function. Some functions show decreases with potentially irreversible global impacts (e.g. reductions in gas and climate regulation, habitat and nursery functions, genetic resources, medicinal resources, and information functions). The most serious impacts occur when forest is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, specific plantation management measures can prevent or reduce losses of some ecosystem functions (e.g. avoid illegal land clearing via fire, avoid draining of peat, use of integrated pest management, use of cover crops, mulch, and compost) and we highlight synergistic mitigation measures that can improve multiple ecosystem functions simultaneously. The only ecosystem function which increases in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to socio-cultural information functions. Further, there is a need for more empirical data on the importance of spatial and temporal scales, such as differences among plantations in different environments, of different sizes, and of different ages, as our review has identified examples where ecosystem functions vary spatially and temporally. Finally, more research is needed on developing management practices that can offset the losses of ecosystem functions. Our findings should stimulate research to address the identified gaps, and provide a foundation for more systematic research and discussion on ways to minimize the negative impacts and maximize the positive impacts of oil palm cultivation."],["dc.identifier.doi","10.1111/brv.12295"],["dc.identifier.fs","621226"],["dc.identifier.gro","3148957"],["dc.identifier.pmid","27511961"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14337"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5600"],["dc.language.iso","en"],["dc.notes.intern","Wiegand Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B10: Landschaftsbezogene Bewertung der ökologischen und sozioökonomischen Funktionen von Regenwald- Transformationssystemen in Sumatra (Indonesien)"],["dc.relation.issn","1464-7931"],["dc.relation.orgunit","Abteilung Ökosystemmodellierung"],["dc.relation.orgunit","Wirtschaftswissenschaftliche Fakultät"],["dc.relation.orgunit","Abteilung Bioklimatologie"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0/"],["dc.subject.gro","Elaeis guineensis"],["dc.subject.gro","biodiversity"],["dc.subject.gro","ecosystem functions"],["dc.subject.gro","ecosystem services"],["dc.subject.gro","land-use change"],["dc.subject.gro","oil palm"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","A review of the ecosystem functions in oil palm plantations, using forests as a reference system"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e0190506"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","PLOS ONE"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Dislich, Claudia"],["dc.contributor.author","Hettig, Elisabeth"],["dc.contributor.author","Salecker, Jan"],["dc.contributor.author","Heinonen, Johannes"],["dc.contributor.author","Lay, Jann"],["dc.contributor.author","Meyer, Katrin M."],["dc.contributor.author","Wiegand, Kerstin"],["dc.contributor.author","Tarigan, Suria"],["dc.date.accessioned","2019-07-09T11:45:08Z"],["dc.date.available","2019-07-09T11:45:08Z"],["dc.date.issued","2018"],["dc.description.abstract","Land-use changes have dramatically transformed tropical landscapes. We describe an ecological-economic land-use change model as an integrated, exploratory tool used to analyze how tropical land-use change affects ecological and socio-economic functions. The model analysis seeks to determine what kind of landscape mosaic can improve the ensemble of ecosystem functioning, biodiversity, and economic benefit based on the synergies and trade-offs that we have to account for. More specifically, (1) how do specific ecosystem functions, such as carbon storage, and economic functions, such as household consumption, relate to each other? (2) How do external factors, such as the output prices of crops, affect these relationships? (3) How do these relationships change when production inefficiency differs between smallholder farmers and learning is incorporated? We initialize the ecological-economic model with artificially generated land-use maps parameterized to our study region. The economic sub-model simulates smallholder land-use management decisions based on a profit maximization assumption. Each household determines factor inputs for all household fields and decides on land-use change based on available wealth. The ecological sub-model includes a simple account of carbon sequestration in above-ground and below-ground vegetation. We demonstrate model capabilities with results on household consumption and carbon sequestration from different output price and farming efficiency scenarios. The overall results reveal complex interactions between the economic and ecological spheres. For instance, model scenarios with heterogeneous crop-specific household productivity reveal a comparatively high inertia of land-use change. Our model analysis even shows such an increased temporal stability in landscape composition and carbon stocks of the agricultural area under dynamic price trends. These findings underline the utility of ecological-economic models, such as ours, to act as exploratory tools which can advance our understanding of the mechanisms underlying the trade-offs and synergies of ecological and economic functions in tropical landscapes."],["dc.identifier.doi","10.1371/journal.pone.0190506"],["dc.identifier.pmid","29351290"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15038"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59163"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B10: Landschaftsbezogene Bewertung der ökologischen und sozioökonomischen Funktionen von Regenwald- Transformationssystemen in Sumatra (Indonesien)"],["dc.relation.issn","1932-6203"],["dc.relation.orgunit","Abteilung Ökosystemmodellierung"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.subject.ddc","570"],["dc.subject.gro","sfb990_journalarticles"],["dc.subject.mesh","Arecaceae"],["dc.subject.mesh","Carbon Sequestration"],["dc.subject.mesh","Conservation of Natural Resources"],["dc.subject.mesh","Crops, Agricultural"],["dc.subject.mesh","Ecosystem"],["dc.subject.mesh","Models, Theoretical"],["dc.subject.mesh","Palm Oil"],["dc.subject.mesh","Tropical Climate"],["dc.title","Land-use change in oil palm dominated tropical landscapes-An agent-based model to explore ecological and socio-economic trade-offs."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2015-06Working Paper
    [["dc.bibliographiccitation.seriesnr","16"],["dc.contributor.author","Dislich, Claudia"],["dc.contributor.author","Keyel, Alexander C."],["dc.contributor.author","Salecker, Jan"],["dc.contributor.author","Kisel, Yael"],["dc.contributor.author","Meyer, Katrin M."],["dc.contributor.author","Corre, Marife D."],["dc.contributor.author","Faust, Heiko"],["dc.contributor.author","Hess, Bastian"],["dc.contributor.author","Knohl, Alexander"],["dc.contributor.author","Kreft, Holger"],["dc.contributor.author","Meijide, Ana"],["dc.contributor.author","Nurdiansyah, Fuad"],["dc.contributor.author","Otten, Fenna"],["dc.contributor.author","Pe’er, Guy"],["dc.contributor.author","Steinebach, Stefanie"],["dc.contributor.author","Tarigan, Suria"],["dc.contributor.author","Tscharntke, Teja"],["dc.contributor.author","Tölle, Merja"],["dc.contributor.author","Wiegand, Kerstin"],["dc.date.accessioned","2022-05-19T10:11:54Z"],["dc.date.available","2022-05-19T10:11:54Z"],["dc.date.issued","2015-06"],["dc.description.abstract","Oil palm plantations have expanded rapidly in the last decades. This large-scale land-use change has had great impacts on both the areas converted to oil palm and their surroundings. However, research on the impacts of oil palm agriculture is scattered and patchy, and no clear overview exists. Here, we address this gap through a systematic and comprehensive literature review of all ecosystem functions in oil palm plantations. We compare ecosystem functions in oil palm plantations to those in forests as forests are often cleared for the establishment of oil palm. We find that oil palm plantations generally have reduced ecosystem functioning compared to forests. Some of these functions are lost globally, such as those to gas and climate regulation and to habitat and nursery functions. The most serious impacts occur when land is cleared to establish new plantations, and immediately afterwards, especially on peat soils. To variable degrees, plantation management can prevent or reduce losses of some ecosystem functions. The only ecosystem function which increased in oil palm plantations is, unsurprisingly, the production of marketable goods. Our review highlights numerous research gaps. In particular, there are significant gaps with respect to information functions (socio-cultural functions). There is a need for empirical data on the importance of spatial and temporal scales, such as the differences between plantations in different environments, of different sizes, and of different ages. Finally, more research is needed on developing management practices that can off-set the losses of ecosystem functions. Our findings should stimulate research to address the identified gaps, and provide a foundation for more systematic research and discussion on ways to minimize the negative impacts and maximize the positive impacts of oil palm agriculture."],["dc.format.extent","IV, 55"],["dc.identifier.ppn","829081887"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108099"],["dc.language.iso","en"],["dc.publisher","SFB 990, University of Göttingen; GOEDOC, Dokumenten- und Publikationsserver der Georg-August-Universität Göttingen"],["dc.publisher.place","Göttingen"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | A | A03: Untersuchung von Land-Atmosphäre Austauschprozesse in Landnutzungsänderungs-Systemen"],["dc.relation","SFB 990 | A | A05: Optimierung des Nährstoffmanagements in Ölpalmplantagen und Hochrechnung plot-basierter Treibhausgasflüsse auf die Landschaftsebene transformierter Regenwälder"],["dc.relation","SFB 990 | B | B06: Taxonomische, funktionelle, phylogenetische und biogeographische Diversität vaskulärer Pflanzen in Regenwald-Transformationssystemen auf Sumatra (Indonesien)"],["dc.relation","SFB 990 | B | B09: Oberirdische Biodiversitätsmuster und Prozesse in Regenwaldtransformations-Landschaften"],["dc.relation","SFB 990 | B | B10: Landschaftsbezogene Bewertung der ökologischen und sozioökonomischen Funktionen von Regenwald- Transformationssystemen in Sumatra (Indonesien)"],["dc.relation","SFB 990 | C | C02: Soziale Transformationsprozesse und nachhaltige Ressourcennutzung im ländlichen Jambi"],["dc.relation","SFB 990 | C | C03: Culture-Specific Human Interaction with Tropical Lowland Rainforests in Transformation in Jambi, Sumatra"],["dc.relation.crisseries","EFForTS Discussion Paper Series"],["dc.relation.orgunit","Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie"],["dc.rights","CC BY-ND 4.0"],["dc.subject.gro","ecosystem functions; ecosystem services; biodiversity; oil palm; land-use change; Elaeis guineensis; review"],["dc.subject.gro","sfb990_discussionpaperseries"],["dc.title","Ecosystem functions of oil palm plantations"],["dc.title.subtitle","a review"],["dc.type","working_paper"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e0222949"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","PLoS One"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Salecker, Jan"],["dc.contributor.author","Dislich, Claudia"],["dc.contributor.author","Wiegand, Kerstin"],["dc.contributor.author","Meyer, Katrin M."],["dc.contributor.author","Pe Er, Guy"],["dc.date.accessioned","2020-12-08T07:41:51Z"],["dc.date.available","2020-12-08T07:41:51Z"],["dc.date.issued","2019"],["dc.description.abstract","Spatially-explicit simulation models are commonly used to study complex ecological and socio-economic research questions. Often these models depend on detailed input data, such as initial land-cover maps to set up model simulations. Here we present the landscape generator EFFortS-LGraf that provides artificially-generated land-use maps of agricultural landscapes shaped by small-scale farms. EFForTS-LGraf is a process-based landscape generator that explicitly incorporates the human dimension of land-use change. The model generates roads and villages that consist of smallholder farming households. These smallholders use different establishment strategies to create fields in their close vicinity. Crop types are distributed to these fields based on crop fractions and specialization levels. EFForTS-LGraf model parameters such as household area or field size frequency distributions can be derived from household surveys or geospatial data. This can be an advantage over the abstract parameters of neutral landscape generators. We tested the model using oil palm and rubber farming in Indonesia as a case study and validated the artificially-generated maps against classified satellite images. Our results show that EFForTS-LGraf is able to generate realistic land-cover maps with properties that lie within the boundaries of landscapes from classified satellite images. An applied simulation experiment on landscape-level effects of increasing household area and crop specialization revealed that larger households with higher specialization levels led to spatially more homogeneous and less scattered crop type distributions and reduced edge area proportion. Thus, EFForTS-LGraf can be applied both to generate maps as inputs for simulation modelling and as a stand-alone tool for specific landscape-scale analyses in the context of ecological-economic studies of smallholder farming systems."],["dc.identifier.doi","10.1371/journal.pone.0222949"],["dc.identifier.pmid","31560726"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16510"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/69449"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B10: Landschaftsbezogene Bewertung der ökologischen und sozioökonomischen Funktionen von Regenwald- Transformationssystemen in Sumatra (Indonesien)"],["dc.relation.eissn","1932-6203"],["dc.relation.orgunit","Abteilung Ökosystemmodellierung"],["dc.relation.orgunit","Zentrum für Biodiversität und Nachhaltige Landnutzung"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.gro","landscape generator"],["dc.subject.gro","agent-based model"],["dc.subject.gro","ABM"],["dc.subject.gro","NetLogo"],["dc.subject.gro","process-based"],["dc.subject.gro","Indonesia"],["dc.subject.gro","sfb990_journalarticles"],["dc.title","EFForTS-LGraf: A landscape generator for creating smallholder-driven land-use mosaics"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019-05Working Paper
    [["dc.bibliographiccitation.seriesnr","29"],["dc.contributor.author","Salecker, Jan"],["dc.contributor.author","Dislich, Claudia"],["dc.contributor.author","Wiegand, Kerstin"],["dc.contributor.author","Meyer, Katrin M."],["dc.contributor.author","Pe’er, Guy"],["dc.date.accessioned","2022-05-19T11:18:58Z"],["dc.date.available","2022-05-19T11:18:58Z"],["dc.date.issued","2019-05"],["dc.description.abstract","Spatially-explicit simulation models are commonly used to study complex ecological and socio-economic research questions. Often these models depend on detailed input data, such as initial land-cover maps to set up model simulations. Here we present the landscape generator EFFortS- LGraf that provides artificially-generated land-use maps of agricultural landscapes shaped by small- scale farms. EFForTS-LGraf is a process-based landscape generator that explicitly incorporates the human dimension of land-use change. The model generates roads and villages that consist of smallholder farming households. These smallholders use different establishment strategies to create fields in their close vicinity. Crop types are distributed to these fields based on crop fractions and specialization levels. EFForTS-LGraf model parameters such as household area or field size frequency distributions can be derived from household surveys or geospatial data. This can be an advantage over the abstract parameters of neutral landscape generators. We tested the model using oil palm and rubber farming in Indonesia as a case study and validated the artificially-generated maps against classified satellite images. Our results show that EFForTS-LGraf is able to generate realistic land-cover maps with properties that lie within the boundaries of landscapes from classified satellite images. An applied simulation experiment on landscape-level effects of increasing household area and crop specialization revealed that larger households with higher specialization levels led to spatially more homogeneous and less scattered crop type distributions and reduced edge area proportion. Thus, EFForTS-LGraf can be applied both to generate maps as inputs for simulation modelling and as a stand-alone tool for specific landscape-scale analyses in the context of ecological-economic studies of smallholder farming systems."],["dc.format.extent","37"],["dc.identifier.ppn","1665217219"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/108110"],["dc.language.iso","en"],["dc.publisher","SFB 990, University of Göttingen; GOEDOC, Dokumenten- und Publikationsserver der Georg-August-Universität Göttingen"],["dc.publisher.place","Göttingen"],["dc.relation","SFB 990: Ökologische und sozioökonomische Funktionen tropischer Tieflandregenwald-Transformationssysteme (Sumatra, Indonesien)"],["dc.relation","SFB 990 | B | B10: Landschaftsbezogene Bewertung der ökologischen und sozioökonomischen Funktionen von Regenwald- Transformationssystemen in Sumatra (Indonesien)"],["dc.relation.crisseries","EFForTS Discussion Paper Series"],["dc.relation.orgunit","Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie"],["dc.rights","CC BY-NC-ND 4.0"],["dc.subject.gro","landscape generator; agent-based model; ABM; NetLogo; process-based; Indonesia"],["dc.subject.gro","sfb990_discussionpaperseries"],["dc.title","EFForTS-LGraf"],["dc.title.subtitle","A Landscape Generator for Creating Smallholder-Driven Land-Use Mosaics"],["dc.type","working_paper"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details