Options
Milovanovic, Dragomir
Loading...
Preferred name
Milovanovic, Dragomir
Official Name
Milovanovic, Dragomir
Alternative Name
Milovanovic, D.
Main Affiliation
Now showing 1 - 6 of 6
2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","100011"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Biophysical Reports"],["dc.bibliographiccitation.volume","1"],["dc.contributor.author","Wang, Huan"],["dc.contributor.author","Kelley, Fleurie M."],["dc.contributor.author","Milovanovic, Dragomir"],["dc.contributor.author","Schuster, Benjamin S."],["dc.contributor.author","Shi, Zheng"],["dc.date.accessioned","2022-08-25T10:36:09Z"],["dc.date.available","2022-08-25T10:36:09Z"],["dc.date.issued","2021"],["dc.description.abstract","The material properties of biomolecular condensates have been suggested to play important biological and pathological roles. Despite the rapid increase in the number of biomolecules identified that undergo liquid-liquid phase separation, quantitative studies and direct measurements of the material properties of the resulting condensates have been severely lagging behind. Here, we develop a micropipette-based technique that uniquely, to our knowledge, allows quantifications of both the surface tension and viscosity of biomolecular condensates, independent of labeling and surface-wetting effects. We demonstrate the accuracy and versatility of this technique by measuring condensates of LAF-1 RGG domains and a polymer-based aqueous two-phase system. We further confirm our measurements using established condensate fusion and fluorescence recovery after photobleaching assays. We anticipate the micropipette-based technique will be widely applicable to biomolecular condensates and will resolve several limitations regarding current approaches."],["dc.identifier.doi","10.1016/j.bpr.2021.100011"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113229"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/129"],["dc.language.iso","en"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation.issn","2667-0747"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Surface tension and viscosity of protein condensates quantified by micropipette aspiration"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article Overview [["dc.bibliographiccitation.firstpage","16"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Signal Transduction and Targeted Therapy"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Hoffmann, Christian"],["dc.contributor.author","Rankovic, Branislava"],["dc.contributor.author","Milovanovic, Dragomir"],["dc.date.accessioned","2022-08-25T11:45:57Z"],["dc.date.available","2022-08-25T11:45:57Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1038/s41392-022-00876-5"],["dc.identifier.pmid","35027537"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113232"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/149"],["dc.language.iso","en"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | B10: Nanoskalige Dynamik und Regulation von Synapsin-Kondensaten"],["dc.relation.issn","2059-3635"],["dc.relation.workinggroup","RG Milovanovic (Molecular Neuroscience)"],["dc.rights","CC BY 4.0"],["dc.title","Signals from the interface: protein nanoclusters stabilize biomolecular condensates"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2016Journal Article [["dc.bibliographiccitation.firstpage","7868"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","7876"],["dc.bibliographiccitation.volume","291"],["dc.contributor.author","Milovanovic, Dragomir"],["dc.contributor.author","Platen, Mitja"],["dc.contributor.author","Junius, Meike"],["dc.contributor.author","Diederichsen, Ulf"],["dc.contributor.author","Schaap, Iwan A. T."],["dc.contributor.author","Honigmann, Alf"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","van den Bogaart, Geert"],["dc.date.accessioned","2020-12-10T18:12:56Z"],["dc.date.available","2020-12-10T18:12:56Z"],["dc.date.issued","2016"],["dc.description.abstract","Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of total plasma membrane lipids, but it has a substantial role in the regulation of many cellular functions, including exo- and endocytosis. Recently, it was shown that PI(4,5)P2and syntaxin 1, a SNARE protein that catalyzes regulated exocytosis, form domains in the plasma membrane that constitute recognition sites for vesicle docking. Also, calcium was shown to promote syntaxin 1 clustering in the plasma membrane, but the molecular mechanism was unknown. Here, using a combination of superresolution stimulated emission depletion microscopy, FRET, and atomic force microscopy, we show that Ca(2+)acts as a charge bridge that specifically and reversibly connects multiple syntaxin 1/PI(4,5)P2complexes into larger mesoscale domains. This transient reorganization of the plasma membrane by physiological Ca(2+)concentrations is likely to be important for Ca(2+)-regulated secretion."],["dc.identifier.doi","10.1074/jbc.M116.716225"],["dc.identifier.eissn","1083-351X"],["dc.identifier.issn","0021-9258"],["dc.identifier.pmid","26884341"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13366"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74536"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","final"],["dc.relation.eissn","1083-351X"],["dc.relation.eissn","0021-9258"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.title","Calcium Promotes the Formation of Syntaxin 1 Mesoscale Domains through Phosphatidylinositol 4,5-Bisphosphate"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Perego, Eleonora"],["dc.contributor.author","Reshetniak, Sofiia"],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Hoffmann, Christian"],["dc.contributor.author","Milovanović, Dragomir"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2021-04-14T08:26:53Z"],["dc.date.available","2021-04-14T08:26:53Z"],["dc.date.issued","2020"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41598-020-77887-1"],["dc.identifier.pmid","33273508"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17819"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82109"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/98"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/65"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | B02: Ein in vitro-Verfahren zum Verständnis der struktur-organisierenden Rolle des Vesikel-Clusters"],["dc.relation.eissn","2045-2322"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.subject.gro","neuro biophysics"],["dc.subject.gro","molecular biophysics"],["dc.title","A minimalist model to measure interactions between proteins and synaptic vesicles"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2015Journal Article [["dc.bibliographiccitation.artnumber","5984"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Milovanovic, Dragomir"],["dc.contributor.author","Honigmann, Alf"],["dc.contributor.author","Koike, Seiichi"],["dc.contributor.author","Göttfert, Fabian"],["dc.contributor.author","Pähler, Gesa"],["dc.contributor.author","Junius, Meike"],["dc.contributor.author","Müllar, Stefan"],["dc.contributor.author","Diederichsen, Ulf"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Grubmüller, Helmut"],["dc.contributor.author","Risselada, H. J."],["dc.contributor.author","Eggeling, Christian"],["dc.contributor.author","Hell, Stefan"],["dc.contributor.author","van den Bogaart, Geert"],["dc.contributor.author","Jahn, Reinhard"],["dc.date.accessioned","2017-09-07T11:44:46Z"],["dc.date.available","2017-09-07T11:44:46Z"],["dc.date.issued","2015"],["dc.description.abstract","The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes."],["dc.identifier.doi","10.1038/ncomms6984"],["dc.identifier.fs","613597"],["dc.identifier.gro","3141986"],["dc.identifier.isi","000348812100002"],["dc.identifier.pmid","25635869"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13586"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3279"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2041-1723"],["dc.rights.access","openAccess"],["dc.subject.mesh","Animals"],["dc.subject.mesh","Fluorescence Resonance Energy Transfer"],["dc.subject.mesh","Fluorescent Antibody Technique"],["dc.subject.mesh","Humans"],["dc.subject.mesh","Hydrophobic and Hydrophilic Interactions"],["dc.subject.mesh","Molecular Dynamics Simulation"],["dc.subject.mesh","Phosphatidylinositols"],["dc.subject.mesh","Protein Binding"],["dc.subject.mesh","Protein Structure, Tertiary"],["dc.subject.mesh","Rats"],["dc.subject.mesh","SNARE Proteins"],["dc.title","Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2015Journal Article Research Paper [["dc.bibliographiccitation.artnumber","12006"],["dc.bibliographiccitation.firstpage","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.lastpage","15"],["dc.bibliographiccitation.volume","5"],["dc.contributor.author","Schwenen, Lando L. G."],["dc.contributor.author","Hubrich, Raphael"],["dc.contributor.author","Milovanovic, Dragomir"],["dc.contributor.author","Geil, Burkhard"],["dc.contributor.author","Yang, Jian"],["dc.contributor.author","Kros, Alexander"],["dc.contributor.author","Jahn, Reinhard"],["dc.contributor.author","Steinem, Claudia"],["dc.date.accessioned","2017-09-07T11:43:42Z"],["dc.date.available","2017-09-07T11:43:42Z"],["dc.date.issued","2015"],["dc.description.abstract","Even though a number of different in vitro fusion assays have been developed to analyze protein mediated fusion, they still only partially capture the essential features of the in vivo situation. Here we established an in vitro fusion assay that mimics the fluidity and planar geometry of the cellular plasma membrane to be able to monitor fusion of single protein-containing vesicles. As a proof of concept, planar pore-spanning membranes harboring SNARE-proteins were generated on highly ordered functionalized 1.2 mu m-sized pore arrays in Si3N4. Full mobility of the membrane components was demonstrated by fluorescence correlation spectroscopy. Fusion was analyzed by two color confocal laser scanning fluorescence microscopy in a time resolved manner allowing to readily distinguish between vesicle docking, intermediate states such as hemifusion and full fusion. The importance of the membrane geometry on the fusion process was highlighted by comparing SNARE-mediated fusion with that of a minimal SNARE fusion mimetic."],["dc.identifier.doi","10.1038/srep12006"],["dc.identifier.fs","613746"],["dc.identifier.gro","3141864"],["dc.identifier.isi","000357847500001"],["dc.identifier.pmid","26165860"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13641"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1923"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: DFG [SFB 803, B04, B05]; Chinese Scholarship Council (CSC)"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","2045-2322"],["dc.rights.access","openAccess"],["dc.subject.mesh","Animals"],["dc.subject.mesh","Biomimetic Materials"],["dc.subject.mesh","Fluorescent Dyes"],["dc.subject.mesh","Gold"],["dc.subject.mesh","Kinetics"],["dc.subject.mesh","Membrane Fusion"],["dc.subject.mesh","Microscopy, Confocal"],["dc.subject.mesh","Models, Biological"],["dc.subject.mesh","Porosity"],["dc.subject.mesh","Rats"],["dc.subject.mesh","Recombinant Proteins"],["dc.subject.mesh","SNARE Proteins"],["dc.subject.mesh","Silicon Compounds"],["dc.subject.mesh","Time-Lapse Imaging"],["dc.subject.mesh","Unilamellar Liposomes"],["dc.title","Resolving single membrane fusion events on planar pore-spanning membranes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS