Now showing 1 - 6 of 6
  • 2013Journal Article
    [["dc.bibliographiccitation.firstpage","15682"],["dc.bibliographiccitation.issue","50"],["dc.bibliographiccitation.journal","Langmuir"],["dc.bibliographiccitation.lastpage","15688"],["dc.bibliographiccitation.volume","29"],["dc.contributor.author","Peddireddy, Karthik"],["dc.contributor.author","Kumar, Pramoda"],["dc.contributor.author","Thutupalli, Shashi"],["dc.contributor.author","Herminghaus, Stephan"],["dc.contributor.author","Bahr, Christian"],["dc.date.accessioned","2021-06-01T10:50:30Z"],["dc.date.available","2021-06-01T10:50:30Z"],["dc.date.issued","2013"],["dc.identifier.doi","10.1021/la4038588"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86684"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1520-5827"],["dc.relation.issn","0743-7463"],["dc.title","Myelin Structures Formed by Thermotropic Smectic Liquid Crystals"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2007Journal Article
    [["dc.bibliographiccitation.artnumber","061711"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Physical Review E"],["dc.bibliographiccitation.volume","75"],["dc.contributor.author","Kadivar, Erfan"],["dc.contributor.author","Bahr, Christian"],["dc.contributor.author","Stark, Holger"],["dc.date.accessioned","2022-03-01T11:46:56Z"],["dc.date.available","2022-03-01T11:46:56Z"],["dc.date.issued","2007"],["dc.identifier.doi","10.1103/PhysRevE.75.061711"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103852"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1550-2376"],["dc.relation.issn","1539-3755"],["dc.title","Crossover in the wetting behavior at surfactant-laden liquid-crystal–water interfaces: Experiment and theory"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","1937"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Soft Matter"],["dc.bibliographiccitation.lastpage","1946"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Sengupta, Anupam"],["dc.contributor.author","Pieper, Christoph"],["dc.contributor.author","Enderlein, Jörg"],["dc.contributor.author","Bahr, Christian"],["dc.contributor.author","Herminghaus, Stephan"],["dc.date.accessioned","2017-09-07T11:51:51Z"],["dc.date.available","2017-09-07T11:51:51Z"],["dc.date.issued","2012"],["dc.description.abstract","We study the flow of a nematic liquid crystal past a micron-sized cylindrical pillar within a microfluidic confinement of a rectangular cross-section. The liquid crystal molecules are anchored perpendicularly (homeotropic anchoring) to the surface of the pillar and the channel walls. Flow past the cylindrical obstacle generated topological defect structures whose nature, dimensions and morphology varied with the flow velocity and channel dimensions. On increasing the flow speed, we observed sequential evolution of a semi-integer loop, which transformed into an integer hedgehog defect, and finally equilibrated to an extended defect wall. On stopping the flow, the topological defect states reversed its sequence of appearance. Additionally, we introduce dual-focus fluorescence correlation spectroscopy as a general velocimetry technique for microfluidics of liquid crystal systems – with or without topological defect structures."],["dc.identifier.doi","10.1039/c2sm27337c"],["dc.identifier.gro","3146188"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10477"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3943"],["dc.language.iso","en"],["dc.notes","This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively."],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","public"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/215851/EU//HIERARCHY"],["dc.relation.issn","1744-683X"],["dc.relation.orgunit","Fakultät für Physik"],["dc.title","Flow of a nematogen past a cylindrical micro-pillar"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","e2203510119"],["dc.bibliographiccitation.issue","30"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences"],["dc.bibliographiccitation.volume","119"],["dc.contributor.author","Chao, Youchuang"],["dc.contributor.author","Ramírez-Soto, Olinka"],["dc.contributor.author","Bahr, Christian"],["dc.contributor.author","Karpitschka, Stefan"],["dc.date.accessioned","2022-09-01T09:50:23Z"],["dc.date.available","2022-09-01T09:50:23Z"],["dc.date.issued","2022"],["dc.description.abstract","The interplay between phase separation and wetting of multicomponent mixtures is ubiquitous in nature and technology and recently gained significant attention across scientific disciplines, due to the discovery of biomolecular condensates. It is well understood that sessile droplets, undergoing phase separation in a static wetting configuration, exhibit microdroplet nucleation at their contact lines, forming an oil ring during later stages. However, very little is known about the dynamic counterpart, when phase separation occurs in a nonequilibrium wetting configuration, i.e., spreading droplets. Here we show that liquid–liquid phase separation strongly couples to the spreading motion of three-phase contact lines. Thus, the classical Cox–Voinov law is not applicable anymore, because phase separation adds an active spreading force beyond the capillary driving. Intriguingly, we observe that spreading starts well before any visible nucleation of microdroplets in the main droplet. Using high-speed ellipsometry, we further demonstrate that the evaporation-induced enrichment, together with surface forces, causes an even earlier nucleation in the wetting precursor film around the droplet, initiating the observed wetting transition. We expect our findings to improve the fundamental understanding of phase separation processes that involve dynamical contact lines and/or surface forces, with implications in a wide range of applications, from oil recovery or inkjet printing to material synthesis and biomolecular condensates."],["dc.description.sponsorship","Max Planck-University of Twente Center for Complex Fluid Dynamics"],["dc.description.sponsorship","Alexander von Humboldt Fellowship"],["dc.identifier.doi","10.1073/pnas.2203510119"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113695"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","1091-6490"],["dc.relation.issn","0027-8424"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0/"],["dc.title","How liquid–liquid phase separation induces active spreading"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2019Journal Article
    [["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Hokmabad, Babak Vajdi"],["dc.contributor.author","Baldwin, Kyle A."],["dc.contributor.author","Krüger, Carsten"],["dc.contributor.author","Bahr, Christian"],["dc.contributor.author","Maass, Corinna C."],["dc.date.accessioned","2020-12-10T18:25:50Z"],["dc.date.available","2020-12-10T18:25:50Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1103/PhysRevLett.123.178003"],["dc.identifier.eissn","1079-7114"],["dc.identifier.issn","0031-9007"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16667"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75853"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Topological Stabilization and Dynamics of Self-Propelling Nematic Shells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","12426"],["dc.bibliographiccitation.issue","34"],["dc.bibliographiccitation.journal","Langmuir"],["dc.bibliographiccitation.lastpage","12431"],["dc.bibliographiccitation.volume","28"],["dc.contributor.author","Peddireddy, Karthik"],["dc.contributor.author","Kumar, Pramoda"],["dc.contributor.author","Thutupalli, Shashi"],["dc.contributor.author","Herminghaus, Stephan"],["dc.contributor.author","Bahr, Christian"],["dc.date.accessioned","2021-06-01T10:50:30Z"],["dc.date.available","2021-06-01T10:50:30Z"],["dc.date.issued","2012"],["dc.identifier.doi","10.1021/la3015817"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86683"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1520-5827"],["dc.relation.issn","0743-7463"],["dc.title","Solubilization of Thermotropic Liquid Crystal Compounds in Aqueous Surfactant Solutions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI