Now showing 1 - 2 of 2
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","45076"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","Diogo, Catia V."],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Santos, Gabriela L."],["dc.contributor.author","Luna Sanchez, Marta"],["dc.contributor.author","Benit, Paule"],["dc.contributor.author","Rustin, Pierre"],["dc.contributor.author","Carlos Lopez, Luis"],["dc.contributor.author","Milosevic, Ira"],["dc.contributor.author","Raimundo, Nuno"],["dc.date.accessioned","2018-11-07T10:26:02Z"],["dc.date.available","2018-11-07T10:26:02Z"],["dc.date.issued","2017"],["dc.description.abstract","Mitochondria are key cellular signaling platforms, affecting fundamental processes such as cell proliferation, differentiation and death. However, it remains unclear how mitochondrial signaling affects other organelles, particularly lysosomes. Here, we demonstrate that mitochondrial respiratory chain (RC) impairments elicit a stress signaling pathway that regulates lysosomal biogenesis via the microphtalmia transcription factor family. Interestingly, the effect of mitochondrial stress over lysosomal biogenesis depends on the timeframe of the stress elicited: while RC inhibition with rotenone or uncoupling with CCCP initially triggers lysosomal biogenesis, the effect peaks after few hours and returns to baseline. Long-term RC inhibition by long-term treatment with rotenone, or patient mutations in fibroblasts and in a mouse model result in repression of lysosomal biogenesis. The induction of lysosomal biogenesis by short-term mitochondrial stress is dependent on TFEB and MITF, requires AMPK signaling and is independent of calcineurin signaling. These results reveal an integrated view of how mitochondrial signaling affects lysosomes, which is essential to fully comprehend the consequences of mitochondrial malfunction, particularly in the context of mitochondrial diseases."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1038/srep45076"],["dc.identifier.isi","000397760800001"],["dc.identifier.pmid","28345620"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14396"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42963"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Nature Publishing Group"],["dc.relation.issn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Acute and chronic mitochondrial respiratory chain deficiency differentially regulate lysosomal biogenesis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","345"],["dc.bibliographiccitation.journal","The International Journal of Biochemistry & Cell Biology"],["dc.bibliographiccitation.lastpage","349"],["dc.bibliographiccitation.volume","79"],["dc.contributor.author","Raimundo, Nuno"],["dc.contributor.author","Fernandez-Mosquera, Lorena"],["dc.contributor.author","Yambire, King Faisal"],["dc.contributor.author","Diogo, Catia V."],["dc.date.accessioned","2018-11-07T10:07:34Z"],["dc.date.available","2018-11-07T10:07:34Z"],["dc.date.issued","2016"],["dc.description.abstract","Mitochondria and lysosomes have long been studied in the context of their classic functions: energy factory and recycle bin, respectively. In the last twenty years, it became evident that these organelles are much more than simple industrial units, and are indeed in charge of many of cellular processes. Both mitochondria and lysosomes are now recognized as far-reaching signaling platforms, regulating many key aspects of cell and tissue physiology. It has furthermore become clear that mitochondria and lysosomes impact each other. The mechanisms underlying the cross-talk between these organelles are only now starting to be addressed. In this review, we briefly summarize how mitochondria, lysosomes and the lysosome-related process of autophagy affect each other in physiology and pathology. (C) 2016 Elsevier Ltd. All rights reserved."],["dc.identifier.doi","10.1016/j.biocel.2016.08.020"],["dc.identifier.isi","000386985900036"],["dc.identifier.pmid","27613573"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39303"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Pergamon-elsevier Science Ltd"],["dc.relation.issn","1878-5875"],["dc.relation.issn","1357-2725"],["dc.title","Mechanisms of communication between mitochondria and lysosomes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS