Options
Steinmetz, Michael
Loading...
Preferred name
Steinmetz, Michael
Official Name
Steinmetz, Michael
Alternative Name
Steinmetz, M.
Main Affiliation
Now showing 1 - 10 of 43
2017Journal Article [["dc.bibliographiccitation.firstpage","136"],["dc.bibliographiccitation.journal","International Journal of Cardiology"],["dc.bibliographiccitation.lastpage","142"],["dc.bibliographiccitation.volume","248"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Shang, Quanliang"],["dc.contributor.author","Joseph, Navya"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Danford, David A."],["dc.contributor.author","Beerbaum, Phillip"],["dc.contributor.author","Sarikouch, Samir"],["dc.date.accessioned","2020-12-10T14:24:31Z"],["dc.date.available","2020-12-10T14:24:31Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.ijcard.2017.06.121"],["dc.identifier.issn","0167-5273"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/72276"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Abnormal right atrial performance in repaired tetralogy of Fallot: A CMR feature tracking analysis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Conference Abstract [["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Journal of Heart and Lung Transplantation"],["dc.bibliographiccitation.volume","36"],["dc.contributor.author","Schubert, S."],["dc.contributor.author","Degener, Franziska"],["dc.contributor.author","Opgen-Rhein, Bernd"],["dc.contributor.author","Schmidt, Fabian"],["dc.contributor.author","Weigelt, Alexandra"],["dc.contributor.author","Wagner, R."],["dc.contributor.author","Mir, T."],["dc.contributor.author","Rentzsch, A."],["dc.contributor.author","Knyphausen, E. Z."],["dc.contributor.author","Papkostas, K."],["dc.contributor.author","Wiegand, G."],["dc.contributor.author","Ruf, Bettina"],["dc.contributor.author","Hannes, T."],["dc.contributor.author","Reineker, K."],["dc.contributor.author","Kiski, Daniela"],["dc.contributor.author","Khalil, Markus"],["dc.contributor.author","Steinmetz, M."],["dc.contributor.author","Fischer, G."],["dc.contributor.author","Pickardt, Thomas"],["dc.contributor.author","Messroghli, Daniel R."],["dc.date.accessioned","2018-11-07T10:25:27Z"],["dc.date.available","2018-11-07T10:25:27Z"],["dc.date.issued","2017"],["dc.format.extent","S23"],["dc.identifier.isi","000398839800037"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42861"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Elsevier Science Inc"],["dc.publisher.place","New york"],["dc.relation.conference","37th Annual Meeting and Scientific Sessions of the International-Society-for-Heart-and-Lung-Transplantation (ISHLT)"],["dc.relation.eventlocation","San Diego, CA"],["dc.relation.issn","1557-3117"],["dc.relation.issn","1053-2498"],["dc.title","Assist Device Therapy for Myocarditis - Analysis from the German Multi-Centre Prospective Myocarditis Registry in Pediatric Patients: \"Mykke\""],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2014Journal Article [["dc.bibliographiccitation.firstpage","1066"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Clinical Radiology"],["dc.bibliographiccitation.lastpage","1071"],["dc.bibliographiccitation.volume","69"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Joseph, Arun A."],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Unterberg-Buchwald, Christine"],["dc.contributor.author","Merboldt, Klaus-Dietmar"],["dc.contributor.author","Voit, Dirk"],["dc.contributor.author","Steinmetz, M."],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Schaetz, S."],["dc.contributor.author","Zhang, S."],["dc.contributor.author","Frahm, Jens"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Sohns, J. M."],["dc.date.accessioned","2018-11-07T09:34:30Z"],["dc.date.available","2018-11-07T09:34:30Z"],["dc.date.issued","2014"],["dc.description.abstract","AIM: To evaluate the potential of real-time phase-contrast flow magnetic resonance imaging (MRI) at 40 ms resolution for the simultaneous determination of blood flow in the ascending aorta (AA) and superior vena cava (SVC) in response to reduced intrathoracic pressure (Mueller manoeuvre). MATERIALS AND METHODS: Through-plane flow was assessed in 20 healthy young subjects using real-time phase-contrast MRI based on highly undersampled radial fast low-angle shot (FLASH) with image reconstruction by regularized non-linear inversion. Haemodynamic alterations (three repetitions per subject = 60 events) were evaluated during normal breathing (10 s), inhalation with nearly closed epiglottis (10 s), and recovery (20 s). RESULTS: Relative to normal breathing and despite interindividual differences, reduced intrathoracic pressure by at least 30 mmHg significantly decreased the initial peak mean velocity (averaged across the lumen) in the AA by -24 +/- 9% and increased the velocity in the SVC by +28 +/- 25% (p < 0.0001, n = 23 successful events). Respective changes in flow volume per heartbeat were -25 +/- 9% in the AA and +49 +/- 44% in the SVC (p < 0.0001, n = 23). Flow parameters returned to baseline during sustained pressure reduction, while the heart rate was elevated by 10% (p < 0.0001) after the start (n = 24) and end (n = 17) of the manoeuvre. CONCLUSIONS: Real-time flow MRI during low intrathoracic pressure non-invasively revealed quantitative haemodynamic adjustments in both the AA and SVC. (C) 2014 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved."],["dc.description.sponsorship","DFG [LO 1773/1]"],["dc.identifier.doi","10.1016/j.crad.2014.06.004"],["dc.identifier.isi","000342881800013"],["dc.identifier.pmid","25060931"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/32184"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","W B Saunders Co Ltd"],["dc.relation.issn","1365-229X"],["dc.relation.issn","0009-9260"],["dc.title","Real-time phase-contrast flow MRI of haemodynamic changes in the ascending aorta and superior vena cava during Mueller manoeuvre"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2017Journal Article [["dc.bibliographiccitation.firstpage","1149"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","European Radiology"],["dc.bibliographiccitation.lastpage","1156"],["dc.bibliographiccitation.volume","28"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Krüwel, Thomas"],["dc.contributor.author","Zapf, Antonia"],["dc.contributor.author","Stahnke, Vera C."],["dc.contributor.author","Rave-Fränk, Margret"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Sohns, Jan M."],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Ritter, Christian"],["dc.contributor.author","Lotz, Joachim"],["dc.date.accessioned","2020-12-10T14:10:11Z"],["dc.date.available","2020-12-10T14:10:11Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1007/s00330-017-5056-9"],["dc.identifier.eissn","1432-1084"],["dc.identifier.issn","0938-7994"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/70672"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Absence of DNA double-strand breaks in human peripheral blood mononuclear cells after 3 Tesla magnetic resonance imaging assessed by γH2AX flow cytometry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","31"],["dc.bibliographiccitation.journal","Journal of Molecular and Cellular Cardiology"],["dc.bibliographiccitation.lastpage","43"],["dc.bibliographiccitation.volume","127"],["dc.contributor.author","Morhenn, Karoline"],["dc.contributor.author","Quentin, Thomas"],["dc.contributor.author","Wichmann, Helen"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Prondzynski, Maksymilian"],["dc.contributor.author","Söhren, Klaus-Dieter"],["dc.contributor.author","Christ, Torsten"],["dc.contributor.author","Geertz, Birgit"],["dc.contributor.author","Schröder, Sabine"],["dc.contributor.author","Schöndube, Friedrich A."],["dc.contributor.author","Hasenfuss, Gerd"],["dc.contributor.author","Schlossarek, Saskia"],["dc.contributor.author","Zimmermann, Wolfram H."],["dc.contributor.author","Carrier, Lucie"],["dc.contributor.author","Eschenhagen, Thomas"],["dc.contributor.author","Cardinaux, Jean-René"],["dc.contributor.author","Lutz, Susanne"],["dc.contributor.author","Oetjen, Elke"],["dc.date.accessioned","2020-12-10T15:21:48Z"],["dc.date.available","2020-12-10T15:21:48Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1016/j.yjmcc.2018.12.001"],["dc.identifier.issn","0022-2828"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73167"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Mechanistic role of the CREB-regulated transcription coactivator 1 in cardiac hypertrophy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2015Journal Article [["dc.bibliographiccitation.firstpage","670"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","European Heart Journal - Cardiovascular Imaging"],["dc.bibliographiccitation.lastpage","675"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Hoesch, Olga"],["dc.contributor.author","Thuy-Trang Ngyuen, Thuy-Trang Ngyuen"],["dc.contributor.author","Lauerer, Peter"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Paul, Thomas"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Steinmetz, Michael"],["dc.date.accessioned","2018-11-07T09:56:17Z"],["dc.date.available","2018-11-07T09:56:17Z"],["dc.date.issued","2015"],["dc.description.abstract","Aims Ebstein's anomaly (EA) involves a displaced and dysplastic tricuspid valve resulting in an atrialized portion of the right ventricle and an enlargement of the functional right ventricle and right atrium. Biomarkers targeting heart failure such as brain natriuretic peptide (BNP) or haematological parameters [haemoglobin (Hb) and haematocrit (Hct)] are upregulated in states of pulmonary hypoperfusion. We hypothesized that decreased pulmonary perfusion dependent on the stage of right heart failure is a possible mechanism in EA, and that it can be correlated with cardiac magnetic resonance (CMR) parameters. The aim of this study was to investigate the relationship between BNP and haematological parameters with functional parameters from CMR and exercise testing in patients with EA. Methods and results Twenty-five patients with non-corrected EA were studied prospectively (mean age 26 +/- 14 years). BNP level was increased (74 +/- 127 ng/L), and in 16% markedly above the heart failure cut-off level of 100 ng/L. Hb and Hct were increased above normal levels in 20 and 24% of patients, respectively. BNP and Hct/Hb correlated with CMR [total right/left (R/L)-Volume-Index, right atrium-end-diastolic volume index (EDVi), functional right ventricle (fRV)-EDVi, fRV-ejection fraction (EF), tricuspid regurgitation, pulmonary artery flow, and left ventricular EF] and exercise testing [workload/kg, oxygen uptake (VO2), ventilatory response to carbon dioxide production (VE/VCO2), oxygen (O-2) pulse, and heart rate reserve]. The higher BNP and haematological parameters, the higher was the disease severity and the more limited was the physical exercise capacity. Conclusion In this EA cohort, BNP levels and haematological parameters correlated well with functional data from CMR and exercise testing. The total R/L-Volume-Index and BNP, and to some extent hematological parameters, may be useful as prognostic markers in patients with EA."],["dc.description.sponsorship","Faculty of Medicine, Georg-August-University Gottingen, Germany"],["dc.identifier.doi","10.1093/ehjci/jeu312"],["dc.identifier.isi","000358014000013"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36927"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","2047-2412"],["dc.relation.issn","2047-2404"],["dc.title","BNP and haematological parameters are markers of severity of Ebstein's anomaly: correlation with CMR and cardiopulmonary exercise testing"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI WOS2021-01-21Journal Article Research Paper [["dc.bibliographiccitation.journal","Circulation"],["dc.contributor.author","Backhaus, Sören J"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","George, Elisabeth F"],["dc.contributor.author","Hellenkamp, Kristian"],["dc.contributor.author","Gertz, Roman J"],["dc.contributor.author","Billing, Marcus"],["dc.contributor.author","Wachter, Rolf"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Raaz, Uwe"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Friede, Tim"],["dc.contributor.author","Uecker, Martin"],["dc.contributor.author","Hasenfuß, Gerd P."],["dc.contributor.author","Seidler, Tim"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2021-03-08T07:13:50Z"],["dc.date.available","2021-03-08T07:13:50Z"],["dc.date.issued","2021-01-21"],["dc.description.abstract","Background: Right heart catheterisation (RHC) using exercise-stress is the reference standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF) but carries the risk of the invasive procedure. We hypothesized that real-time cardiovascular magnetic resonance (RT-CMR) exercise imaging with pathophysiologic data at excellent temporal and spatial resolution may represent a contemporary non-invasive alternative for diagnosing HFpEF. Methods: The HFpEF stress trial (DZHK-17, NCT03260621) prospectively recruited 75 patients with echocardiographic signs of diastolic dysfunction and dyspnea on exertion (E/e'>8, New York Heart Association (NYHA) class ≥II) to undergo echocardiography, RHC and RT-CMR at rest and during exercise-stress. HFpEF was defined according to pulmonary capillary wedge pressure (PCWP ≥15mmHg at rest or ≥25mmHg during exercise stress). RT-CMR functional assessments included time-volume curves for total and early (1/3) diastolic left ventricular (LV) filling, left atrial (LA) emptying and LV/LA long axis strain (LAS). Results: HFpEF patients (n=34, median PCWP rest 13mmHg, stress 27mmHg) had higher E/e' (12.5 vs. 9.15), NT-proBNP (255 vs. 75ng/l) and LA volume index (43.8 vs. 36.2ml/m2) compared to non-cardiac dyspnea patients (n=34, rest 8mmHg, stress 18mmHg, p≤0.001 for all). Seven patients were excluded due to the presence of non HFpEF cardiac disease causing dyspnea on imaging. There were no differences in RT-CMR LV total and early diastolic filling at rest and during exercise-stress (p≥0.164) between HFpEF and non-cardiac dyspnea. RT-CMR revealed significantly impaired LA total and early (p<0.001) diastolic emptying in HFpEF during exercise-stress. RT-CMR exercise-stress LA LAS was independently associated with HFpEF (adjusted odds ratio 0.657, 95% confidence interval [0.516; 0.838], p=0.001) after adjustment for clinical and imaging parameters and emerged as the best predictor for HFpEF (area under the curve rest 0.82 vs. exercise-stress 0.93, p=0.029). Conclusions: RT-CMR allows highly accurate identification of HFpEF during physiological exercise and qualifies as a suitable non-invasive diagnostic alternative. These results will need to be confirmed in multi-centre prospective research studies to establish widespread routine clinical use. Clinical Trial Registration: URL: https://www.clinicaltrials.gov Unique Identifier: NCT03260621."],["dc.identifier.doi","10.1161/CIRCULATIONAHA.120.051542"],["dc.identifier.pmid","33472397"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80476"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/302"],["dc.language.iso","en"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.issn","0009-7322"],["dc.relation.issn","1524-4539"],["dc.relation.workinggroup","RG Hasenfuß"],["dc.relation.workinggroup","RG Uecker"],["dc.title","Exercise-Stress Real-time Cardiac Magnetic Resonance Imaging for Non-Invasive Characterisation of Heart Failure with Preserved Ejection Fraction: The HFpEF Stress Trial"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2013Conference Abstract [["dc.bibliographiccitation.issue","22"],["dc.bibliographiccitation.journal","Circulation"],["dc.bibliographiccitation.volume","128"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Schulte, Christina"],["dc.contributor.author","Zapf, Antonia"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Kowallick, Johannes"],["dc.contributor.author","Preuss, Christoph"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Thuy-Trang Nguyen, Thuy-Trang Nguyen"],["dc.contributor.author","Paul, Thomas"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Steinmetz, Michael"],["dc.date.accessioned","2018-11-07T09:17:27Z"],["dc.date.available","2018-11-07T09:17:27Z"],["dc.date.issued","2013"],["dc.identifier.isi","000332162907028"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/28173"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Lippincott Williams & Wilkins"],["dc.publisher.place","Philadelphia"],["dc.relation.conference","Scientific Sessions and Resuscitation Science Symposium of the American-Heart-Association"],["dc.relation.eventlocation","Dallas, TX"],["dc.relation.issn","1524-4539"],["dc.relation.issn","0009-7322"],["dc.title","Right Atrial Volume in Tetralogy of Fallot Correlates With the Incidence of Supra-Ventricular Arrhythmia: A MRI Study"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details WOS2014Journal Article [["dc.bibliographiccitation.firstpage","601"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Circulation Cardiovascular Imaging"],["dc.bibliographiccitation.lastpage","609"],["dc.bibliographiccitation.volume","7"],["dc.contributor.author","Hoesch, Olga"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Thuy-Trang Nguyen, Thuy-Trang Nguyen"],["dc.contributor.author","Lauerer, Peter"],["dc.contributor.author","Rosenberg, Christina"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Unterberg, Christina"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Paul, Thomas"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Steinmetz, Michael"],["dc.date.accessioned","2018-11-07T09:38:08Z"],["dc.date.available","2018-11-07T09:38:08Z"],["dc.date.issued","2014"],["dc.description.abstract","Background-The classification of clinical severity of Ebstein anomaly still remains a challenge. The aim of this study was to focus on the interaction of the pathologically altered right heart with the anatomically-supposedly-normal left heart and to derive from cardiac magnetic resonance (CMR) a simple imaging measure for the clinical severity of Ebstein anomaly. Methods and Results-Twenty-five patients at a mean age of 26 +/- 14 years with unrepaired Ebstein anomaly were examined in a prospective study. Disease severity was classified using CMR volumes and functional measurements in comparison with heart failure markers from clinical data, ECG, laboratory and cardiopulmonary exercise testing, and echocardiography. All examinations were completed within 24 hours. A total right/left-volume index was defined from end-diastolic volume measurements in CMR: total right/left-volume index=(RA+aRV+fRV)/(LA+LV). Mean total right/left-volume index was 2.6 +/- 1.7 (normal values: 1.1 +/- 0.1). This new total right/left-volume index correlated with almost all clinically used biomarkers of heart failure: brain natriuretic peptide (r=0.691; P=0.0003), QRS (r=0.432; P=0.039), peak oxygen consumption/kg (r=-0.479; P=0.024), ventilatory response to carbon dioxide production at anaerobic threshold (r=0.426; P=0.048), the severity of tricuspid regurgitation (r=0.692; P=0.009), tricuspid valve offset (r=0.583; P=0.004), and tricuspid annular plane systolic excursion (r=0.554; P=0.006). Previously described severity indices ([RA+aRV]/[fRV+LA+LV]) and fRV/LV end-diastolic volume corresponded only to some parameters. Conclusions-In patients with Ebstein anomaly, the easily acquired index of right-sided to left-sided heart volumes from CMR correlated well with established heart failure markers. Our data suggest that the total right/left-volume index should be used as a new and simplified CMR measure, allowing more accurate assessment of disease severity than previously described scoring systems."],["dc.identifier.doi","10.1161/CIRCIMAGING.113.001467"],["dc.identifier.isi","000339172100006"],["dc.identifier.pmid","24807407"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33001"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Lippincott Williams & Wilkins"],["dc.relation.issn","1942-0080"],["dc.relation.issn","1941-9651"],["dc.title","The Total Right/Left-Volume Index: A New and Simplified Cardiac Magnetic Resonance Measure to Evaluate the Severity of Ebstein Anomaly of the Tricuspid Valve A Comparison With Heart Failure Markers From Various Modalities"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2016Journal Article [["dc.bibliographiccitation.firstpage","459"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Pediatric Cardiology"],["dc.bibliographiccitation.lastpage","464"],["dc.bibliographiccitation.volume","37"],["dc.contributor.author","Dieks, Jana-Katharina"],["dc.contributor.author","Mueller, Matthias J."],["dc.contributor.author","Schneider, Heike E."],["dc.contributor.author","Krause, Ulrich J."],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Paul, Thomas"],["dc.contributor.author","Kriebel, Thomas"],["dc.date.accessioned","2018-11-07T10:17:25Z"],["dc.date.available","2018-11-07T10:17:25Z"],["dc.date.issued","2016"],["dc.description.abstract","Experience of catheter ablation of pediatric focal atrial tachycardia (FAT) is still limited. There are data which were gathered prior to the introduction of modern 3D mapping and navigation systems into the clinical routine. Accordingly, procedures were associated with significant fluoroscopy and low success rates. The aim of this study was to present clinical and electrophysiological details of catheter ablation of pediatric FAT using modern mapping systems. Since March 2003, 17 consecutive patients < 20 years underwent electrophysiological study (EPS) for FAT using the NavX(A (R)) system (n = 7), the non-contact mapping system (n = 6) or the LocaLisa(A (R)) system (n = 4), respectively. Radiofrequency was the primary energy source; cryoablation was performed in selected patients with a focus close to the AV node. In 16 patients, a total number of 19 atrial foci (right-sided n = 13, left-sided n = 6) could be targeted. In the remaining patient, FAT was not present/inducible during EPS. On an intention-to-treat basis, acute success was achieved in 14/16 patients (87.5 %) with a median number of 11 (1-31) energy applications. Ablation was unsuccessful in two patients due to an epicardial location of a right atrial focus (n = 1) and a focus close to the His bundle (n = 1), respectively. Median procedure time was 210 (84-332) min, and median fluoroscopy time was 13.1 (4.5-22.5) min. In pediatric patients with FAT, 3D mapping and catheter ablation provided improved clinical quality of care. Catheter ablation may be considered early in the course of treatment of this tachyarrhythmia in symptomatic patients."],["dc.identifier.doi","10.1007/s00246-015-1299-x"],["dc.identifier.isi","000373308800004"],["dc.identifier.pmid","26538211"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/41220"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","1432-1971"],["dc.relation.issn","0172-0643"],["dc.title","Catheter Ablation of Pediatric Focal Atrial Tachycardia: Ten-Year Experience Using Modern Mapping Systems"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS