Now showing 1 - 6 of 6
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","12247"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","ACS Nano"],["dc.bibliographiccitation.lastpage","12254"],["dc.bibliographiccitation.volume","2018"],["dc.contributor.author","Saal, Kim-A."],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.date.accessioned","2019-07-09T11:50:22Z"],["dc.date.available","2019-07-09T11:50:22Z"],["dc.date.issued","2018"],["dc.description.abstract","Recent advances in optical nanoscopy have brought the imaging resolution to the size of the individual macromolecules, thereby setting stringent requirements for the fluorescent labels. Such requirements are optimally fulfilled by the incorporation of unnatural amino acids (UAAs) in the proteins of interest (POI), followed by fluorophore conjugation via click chemistry. However, this approach has been limited to single POIs in mammalian cells. Here we solve this problem by incorporating different UAAs in different POIs, which are expressed in independent cell sets. The cells are then fused, thereby combining the different proteins and organelles, and are easily imaged by dual-color super-resolution microscopy. This procedure, which we termed Fuse2Click, is simple, requires only the well-established Amber codon, and allows the use of all previously optimized UAAs and tRNA/RS pairs. This should render it a tool of choice for multi-color click-based imaging."],["dc.identifier.doi","10.1021/acsnano.8b06047"],["dc.identifier.pmid","30525434"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15921"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59757"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/47"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/2"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/614765/EU//NEUROMOLANATOMY"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P09: Proteinsortierung in der Synapse: Prinzipien und molekulare Organisation"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A06: Mitochondrienfunktion und -umsatz in Synapsen"],["dc.relation.issn","1936-086X"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","573"],["dc.subject.ddc","612"],["dc.title","Combined Use of Unnatural Amino Acids Enables Dual Color Super-Resolution Imaging of Proteins via Click Chemistry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","598"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","614"],["dc.bibliographiccitation.volume","218"],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Nikolov, Miroslav"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Naumenko, Nataliia"],["dc.contributor.author","Aich, Abhishek"],["dc.contributor.author","MacVicar, Thomas"],["dc.contributor.author","Linden, Andreas"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Langer, Thomas"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2019-07-09T11:50:27Z"],["dc.date.available","2019-07-09T11:50:27Z"],["dc.date.issued","2019"],["dc.description.abstract","The mitochondrial presequence translocation machinery (TIM23 complex) is conserved between the yeast Saccharomyces cerevisiae and humans; however, functional characterization has been mainly performed in yeast. Here, we define the constituents of the human TIM23 complex using mass spectrometry and identified ROMO1 as a new translocase constituent with an exceptionally short half-life. Analyses of a ROMO1 knockout cell line revealed aberrant inner membrane structure and altered processing of the GTPase OPA1. We show that in the absence of ROMO1, mitochondria lose the inner membrane YME1L protease, which participates in OPA1 processing and ROMO1 turnover. While ROMO1 is dispensable for general protein import along the presequence pathway, we show that it participates in the dynamics of TIM21 during respiratory chain biogenesis and is specifically required for import of YME1L. This selective import defect can be linked to charge distribution in the unusually long targeting sequence of YME1L. Our analyses establish an unexpected link between mitochondrial protein import and inner membrane protein quality control."],["dc.identifier.doi","10.1083/jcb.201806093"],["dc.identifier.pmid","30598479"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15943"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59776"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation","info:eu-repo/grantAgreement/EC/FP7/339580/EU//MITRAC"],["dc.relation.issn","1540-8140"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","ROMO1 is a constituent of the human presequence translocase required for YME1L protease import"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","215"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","European surgical research. Europäische chirurgische Forschung. Recherches chirurgicales européennes"],["dc.bibliographiccitation.lastpage","222"],["dc.bibliographiccitation.volume","48"],["dc.contributor.author","Schäfer, T."],["dc.contributor.author","Sperling, J."],["dc.contributor.author","Slotta, J. E."],["dc.contributor.author","Kollmar, O."],["dc.contributor.author","Schilling, M. K."],["dc.contributor.author","Menger, M. D."],["dc.contributor.author","Richter, S."],["dc.date.accessioned","2019-07-09T11:40:02Z"],["dc.date.available","2019-07-09T11:40:02Z"],["dc.date.issued","2012"],["dc.description.abstract","BACKGROUND: Hepatic arterial infusion (HAI) has been developed for high-dose regional chemotherapy of unresectable liver metastases or primary liver malignancies. While it is well known that high concentrations of tumor necrosis factor (TNF)-α damage tumor blood perfusion, there is no information on whether autochthonous liver perfusion is affected by HAI with TNF-α. Therefore, we investigated the effects of HAI with TNF-α on hepatic macro- and microvascular perfusion. METHODS: Swabian Hall pigs were randomized into three groups. HAI was performed with either 20 or 40 µg/kg body weight TNF-α (n = 6 each group). Saline-treated animals served as controls (n = 6). Analyses during a 2-hour post-HAI observation period included systemic hemodynamics, portal venous and hepatic arterial blood flow, portal venous pressure, and the blood flow in the hepatic microcirculation. RESULTS: HAI with TNF-α caused a slight decrease of mean arterial blood pressure (p < 0.001), which was compensated by a moderate increase of heart rate (p < 0.001). No further systemic side effects of TNF-α were observed. HAI with TNF-α further caused a slight but not significant decrease of portal venous blood flow (p = 0.737) in both experimental groups, paralleled by an increase of hepatic arterial blood flow (p = 0.023, 20 µg/kg; p = 0.034, 40 µg/kg) resulting in an overall hepatic hyperperfusion. The hepatic hyperperfusion after HAI with 20 µg/kg TNF-α was more pronounced and associated with a 40% decrease of the blood flow in the hepatic microcirculation (p = 0.009). HAI with 40 µg/kg TNF-α was only associated with a temporary and moderate total hepatic hyperperfusion and did not affect the blood flow in the hepatic microcirculation. CONCLUSION: HAI with TNF-α causes a decrease of portal venous flow; however, this is overcompensated by an increased hepatic arterial blood flow, resulting in a total hepatic hyperperfusion. Moderate total hepatic hyperperfusion does not affect the blood flow in the hepatic microcirculation, while a persistent and more pronounced hyperperfusion may cause hepatic microcirculatory disturbances."],["dc.identifier.doi","10.1159/000339306"],["dc.identifier.fs","594196"],["dc.identifier.pmid","22739241"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10601"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58078"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1421-9921"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.mesh","Animals"],["dc.subject.mesh","Blood Pressure"],["dc.subject.mesh","Female"],["dc.subject.mesh","Heart Rate"],["dc.subject.mesh","Hepatic Artery"],["dc.subject.mesh","Liver Circulation"],["dc.subject.mesh","Male"],["dc.subject.mesh","Microcirculation"],["dc.subject.mesh","Portal Vein"],["dc.subject.mesh","Swine"],["dc.subject.mesh","Tumor Necrosis Factor-alpha"],["dc.subject.mesh","Venous Pressure"],["dc.title","Hepatic arterial infusion with tumor necrosis factor-α induces early hepatic hyperperfusion."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","4147"],["dc.bibliographiccitation.issue","23"],["dc.bibliographiccitation.journal","FEBS Letters"],["dc.bibliographiccitation.lastpage","4158"],["dc.bibliographiccitation.volume","590"],["dc.contributor.author","Callegari, Sylvie"],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Chojnacka, Katarzyna"],["dc.contributor.author","Jans, Daniel C."],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Jakobs, Stefan"],["dc.contributor.author","Lenz, Christof"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:53:09Z"],["dc.date.available","2017-09-07T11:53:09Z"],["dc.date.issued","2016"],["dc.description.abstract","Hydrophobic inner mitochondrial membrane proteins with internal targeting signals, such as the metabolite carriers, use the carrier translocase (TIM22 complex) for transport into the inner membrane. Defects in this transport pathway have been associated with neurodegenerative disorders. While the TIM22 complex is well studied in baker's yeast, very little is known about the mammalian TIM22 complex. Using immunoprecipitation, we purified the human carrier translocase and identified a mitochondrial inner membrane protein TIM29 as a novel component, specific to metazoa. We show that TIM29 is a constituent of the 440 kDa TIM22 complex and interacts with oxidized TIM22. Our analyses demonstrate that TIM29 is required for the structural integrity of the TIM22 complex and for import of substrate proteins by the carrier translocase."],["dc.identifier.doi","10.1002/1873-3468.12450"],["dc.identifier.fs","625768"],["dc.identifier.gro","3145043"],["dc.identifier.pmid","27718247"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14166"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2736"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/59"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P01: Untersuchung der Unterschiede in der Zusammensetzung, Funktion und Position von individuellen MICOS Komplexen in einzelnen Säugerzellen"],["dc.relation","SFB 1190 | P13: Protein Transport über den mitochondrialen Carrier Transportweg"],["dc.relation","SFB 1190 | Z02: Massenspektrometrie-basierte Proteomanalyse"],["dc.relation.issn","0014-5793"],["dc.relation.workinggroup","RG Jakobs (Structure and Dynamics of Mitochondria)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","TIM29 is a subunit of the human carrier translocase required for protein transport"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2018Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","139"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The EMBO journal"],["dc.bibliographiccitation.lastpage","159"],["dc.bibliographiccitation.volume","37"],["dc.contributor.author","Richter, Katharina N."],["dc.contributor.author","Revelo, Natalia H."],["dc.contributor.author","Seitz, Katharina J."],["dc.contributor.author","Helm, Martin S."],["dc.contributor.author","Sarkar, Deblina"],["dc.contributor.author","Saleeb, Rebecca S."],["dc.contributor.author","d'Este, Elisa"],["dc.contributor.author","Eberle, Jessica"],["dc.contributor.author","Wagner, Eva"],["dc.contributor.author","Vogl, Christian"],["dc.contributor.author","Lazaro, Diana F."],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Coy-Vergara, Javier"],["dc.contributor.author","Coceano, Giovanna"],["dc.contributor.author","Boyden, Edward S."],["dc.contributor.author","Duncan, Rory R."],["dc.contributor.author","Hell, Stefan W."],["dc.contributor.author","Lauterbach, Marcel A."],["dc.contributor.author","Lehnart, Stephan E."],["dc.contributor.author","Moser, Tobias"],["dc.contributor.author","Outeiro, Tiago F."],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Testa, Ilaria"],["dc.contributor.author","Zapiec, Bolek"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.date.accessioned","2018-01-09T14:09:53Z"],["dc.date.available","2018-01-09T14:09:53Z"],["dc.date.issued","2018"],["dc.description.abstract","Paraformaldehyde (PFA) is the most commonly used fixative for immunostaining of cells, but has been associated with various problems, ranging from loss of antigenicity to changes in morphology during fixation. We show here that the small dialdehyde glyoxal can successfully replace PFA Despite being less toxic than PFA, and, as most aldehydes, likely usable as a fixative, glyoxal has not yet been systematically tried in modern fluorescence microscopy. Here, we tested and optimized glyoxal fixation and surprisingly found it to be more efficient than PFA-based protocols. Glyoxal acted faster than PFA, cross-linked proteins more effectively, and improved the preservation of cellular morphology. We validated glyoxal fixation in multiple laboratories against different PFA-based protocols and confirmed that it enabled better immunostainings for a majority of the targets. Our data therefore support that glyoxal can be a valuable alternative to PFA for immunostaining."],["dc.identifier.doi","10.15252/embj.201695709"],["dc.identifier.pmid","29146773"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15063"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/11599"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/195"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/15"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P09: Proteinsortierung in der Synapse: Prinzipien und molekulare Organisation"],["dc.relation.eissn","1460-2075"],["dc.relation.workinggroup","RG Hell"],["dc.relation.workinggroup","RG Lehnart (Cellular Biophysics and Translational Cardiology Section)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Glyoxal as an alternative fixative to formaldehyde in immunostaining and super-resolution microscopy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e28324"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Denkert, Niels"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Barbot, Mariam"],["dc.contributor.author","Versemann, Lennart"],["dc.contributor.author","Richter, Frank"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Meinecke, Michael"],["dc.date.accessioned","2020-12-10T18:48:05Z"],["dc.date.available","2020-12-10T18:48:05Z"],["dc.date.issued","2017"],["dc.description.abstract","Virtually all mitochondrial matrix proteins and a considerable number of inner membrane proteins carry a positively charged, N-terminal presequence and are imported by the TIM23 complex (presequence translocase) located in the inner mitochondrial membrane. The voltage-regulated Tim23 channel constitutes the actual protein-import pore wide enough to allow the passage of polypeptides with a secondary structure. In this study, we identify amino acids important for the cation selectivity of Tim23. Structure based mutants show that selectivity is provided by highly conserved, pore-lining amino acids. Mutations of these amino acid residues lead to reduced selectivity properties, reduced protein import capacity and they render the Tim23 channel insensitive to substrates. We thus show that the cation selectivity of the Tim23 channel is a key feature for substrate recognition and efficient protein import."],["dc.format.extent","1"],["dc.identifier.doi","10.7554/eLife.28324"],["dc.identifier.pmid","28857742"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16499"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79012"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/12"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P12: Funktionelle Regulation der mitochondrialen Präsequenz-Translokase"],["dc.relation.eissn","2050-084X"],["dc.relation.orgunit","Institut für Zellbiochemie"],["dc.relation.workinggroup","RG Meinecke (Molecular Membrane Biology)"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","S. cerevisiae; Tim23; biochemistry; biophysics; electrophysiology; membrane channels; mitochondria; mitochondrial biogenesis; protein trafficking; structural biology"],["dc.title","Cation selectivity of the presequence translocase channel Tim23 is crucial for efficient protein import"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC