Now showing 1 - 5 of 5
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","362"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Journal of Structural Biology"],["dc.bibliographiccitation.lastpage","371"],["dc.bibliographiccitation.volume","175"],["dc.contributor.author","Thoms, Sven"],["dc.contributor.author","Hofhuis, Julia"],["dc.contributor.author","Thoeing, Christian"],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Niemann, Hartmut H."],["dc.date.accessioned","2017-09-07T11:43:25Z"],["dc.date.available","2017-09-07T11:43:25Z"],["dc.date.issued","2011"],["dc.description.abstract","The yeast peroxisomal hydrolase Lpx1 belongs to the alpha/beta-hydrolase superfamily. In the absence of Lpx1, yeast peroxisomes show an aberrant vacuolated morphology similar to what is found in peroxisomal disorder patients. Here, we present the crystal structure of Lpx1 determined at a resolution of 1.9 angstrom. The structure reveals the complete catalytic triad with an unusual location of the acid residue after strand beta 6 of the canonical alpha/beta-hydrolase fold. A four-helix cap domain covers the active site. The interface between the alpha/beta-hydrolase core and the cap domain forms the potential substrate binding site, which may also comprise the tunnel that leads into the protein interior and widens into a cavity. Two further tunnels connect the active site to the protein surface, potentially facilitating substrate access. Lpx1 is a homodimer. The alpha/beta-hydrolase core folds of the two protomers form the dimer contact site. Further dimerization contacts arise from the mutual embracement of the cap domain of one protomer by the non-canonical C-terminal helix of the other, resulting in a total buried surface area of some 6000 angstrom(2). The unusual C-terminal helix sticks out from the core fold to which it is connected by an extended flexible loop. We analyzed whether this helix is required for dimerization and for import of the dimer into peroxisomes using biochemical assays in vitro and a microscopy-based interaction assay in mammalian cells. Surprisingly, the C-terminal helix is dispensable for dimerization and dimer import. The unusually robust self-interaction suggests that Lpx1 is imported into peroxisomes as dimer. (C) 2011 Elsevier Inc. All rights reserved."],["dc.identifier.doi","10.1016/j.jsb.2011.06.008"],["dc.identifier.gro","3142679"],["dc.identifier.isi","000293807000012"],["dc.identifier.pmid","21741480"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/109"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Academic Press Inc Elsevier Science"],["dc.relation.issn","1047-8477"],["dc.title","The unusual extended C-terminal helix of the peroxisomal alpha/beta-hydrolase Lpx1 is involved in dimer contacts but dispensable for dimerization"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","841"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.bibliographiccitation.lastpage","852"],["dc.bibliographiccitation.volume","130"],["dc.contributor.author","Hofhuis, Julia"],["dc.contributor.author","Bersch, Kristina"],["dc.contributor.author","Büssenschütt, Ronja"],["dc.contributor.author","Drzymalski, Marzena"],["dc.contributor.author","Liebetanz, David"],["dc.contributor.author","Nikolaev, Viacheslav O."],["dc.contributor.author","Wagner, Stefan"],["dc.contributor.author","Maier, Lars S."],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Klinge, Lars"],["dc.contributor.author","Thoms, Sven"],["dc.date.accessioned","2018-04-23T11:47:27Z"],["dc.date.available","2018-04-23T11:47:27Z"],["dc.date.issued","2017"],["dc.description.abstract","The multi-C2 domain protein dysferlin localizes to the plasma membrane and the T-tubule system in skeletal muscle; however, its physiological mode of action is unknown. Mutations in the DYSF gene lead to autosomal recessive limb-girdle muscular dystrophy type 2B and Miyoshi myopathy. Here, we show that dysferlin has membrane tubulating capacity and that it shapes the T-tubule system. Dysferlin tubulates liposomes, generates a T-tubule-like membrane system in non-muscle cells, and links the recruitment of phosphatidylinositol 4,5-bisphosphate to the biogenesis of the T-tubule system. Pathogenic mutant forms interfere with all of these functions, indicating that muscular wasting and dystrophy are caused by the dysferlin mutants' inability to form a functional T-tubule membrane system."],["dc.identifier.doi","10.1242/jcs.198861"],["dc.identifier.gro","3142220"],["dc.identifier.pmid","28104817"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13342"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/160"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A10: Peroxisomen als modulatorische Einheiten im Herzstoffwechsel und bei Herzinsuffizienz"],["dc.relation.issn","0021-9533"],["dc.relation.workinggroup","RG L. Maier (Experimentelle Kardiologie)"],["dc.relation.workinggroup","RG Nikolaev (Cardiovascular Research Center)"],["dc.relation.workinggroup","RG Thoms (Biochemistry and Molecular Medicine)"],["dc.title","Dysferlin mediates membrane tubulation and links T-tubule biogenesis to muscular dystrophy"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","105012"],["dc.bibliographiccitation.journal","Neurobiology of Disease"],["dc.bibliographiccitation.volume","143"],["dc.contributor.author","Lazarov, Elinor"],["dc.contributor.author","Hillebrand, Merle"],["dc.contributor.author","Schröder, Simone"],["dc.contributor.author","Ternka, Katharina"],["dc.contributor.author","Hofhuis, Julia"],["dc.contributor.author","Ohlenbusch, Andreas"],["dc.contributor.author","Barrantes-Freer, Alonso"],["dc.contributor.author","Pardo, Luis A."],["dc.contributor.author","Fruergaard, Marlene U."],["dc.contributor.author","Nissen, Poul"],["dc.contributor.author","Brockmann, Knut"],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Rosewich, Hendrik"],["dc.date.accessioned","2021-04-14T08:23:22Z"],["dc.date.available","2021-04-14T08:23:22Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1016/j.nbd.2020.105012"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17488"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80889"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","0969-9961"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Comparative analysis of alternating hemiplegia of childhood and rapid-onset dystonia-parkinsonism ATP1A3 mutations reveals functional deficits, which do not correlate with disease severity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e03640"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Schueren, Fabian"],["dc.contributor.author","Lingner, Thomas"],["dc.contributor.author","George, Rosemol"],["dc.contributor.author","Hofhuis, Julia"],["dc.contributor.author","Dickel, Corinna"],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Thoms, Sven"],["dc.date.accessioned","2017-09-07T11:45:30Z"],["dc.date.available","2017-09-07T11:45:30Z"],["dc.date.issued","2014"],["dc.description.abstract","Translational readthrough gives rise to low abundance proteins with C-terminal extensions beyond the stop codon. To identify functional translational readthrough, we estimated the readthrough propensity (RTP) of all stop codon contexts of the human genome by a new regression model in silico, identified a nucleotide consensus motif for high RTP by using this model, and analyzed all readthrough extensions in silico with a new predictor for peroxisomal targeting signal type 1 (PTS1). Lactate dehydrogenase B (LDHB) showed the highest combined RTP and PTS1 probability. Experimentally we show that at least 1.6% of the total cellular LDHB getting targeted to the peroxisome by a conserved hidden PTS1. The readthrough-extended lactate dehydrogenase subunit LDHBx can also co-import LDHA, the other LDH subunit into peroxisomes. Peroxisomal LDH is conserved in mammals and likely contributes to redox equivalent regeneration in peroxisomes."],["dc.identifier.doi","10.7554/eLife.03640"],["dc.identifier.gro","3142048"],["dc.identifier.isi","000342090300002"],["dc.identifier.pmid","25247702"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11685"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3967"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Elife Sciences Publications Ltd"],["dc.relation.issn","2050-084X"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Peroxisomal lactate dehydrogenase is generated by translational readthrough in mammals"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","160246"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Open Biology"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Hofhuis, Julia"],["dc.contributor.author","Schueren, Fabian"],["dc.contributor.author","Nötzel, Christopher"],["dc.contributor.author","Lingner, Thomas"],["dc.contributor.author","Gärtner, Jutta"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Thoms, Sven"],["dc.date.accessioned","2018-04-23T11:47:31Z"],["dc.date.available","2018-04-23T11:47:31Z"],["dc.date.issued","2016"],["dc.description.abstract","Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2016"],["dc.identifier.doi","10.1098/rsob.160246"],["dc.identifier.gro","3142222"],["dc.identifier.pmid","27881739"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14098"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/13345"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/276"],["dc.language.iso","en"],["dc.notes.intern","lifescience updates Crossref Import"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A10: Peroxisomen als modulatorische Einheiten im Herzstoffwechsel und bei Herzinsuffizienz"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation.issn","2046-2441"],["dc.relation.workinggroup","RG Thoms (Biochemistry and Molecular Medicine)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"],["local.message.claim","2020-08-07T08:23:16.626+0000|||rp114519|||submit_approve|||dc_contributor_author|||None"]]
    Details DOI PMID PMC