Options
Stülke, Jörg
Loading...
Preferred name
Stülke, Jörg
Official Name
Stülke, Jörg
Alternative Name
Stuelke, Joerg
Stuelke, J.
Stülke, J.
Main Affiliation
Now showing 1 - 10 of 13
2019Journal Article [["dc.bibliographiccitation.firstpage","9605"],["dc.bibliographiccitation.issue","24"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","9614"],["dc.bibliographiccitation.volume","294"],["dc.contributor.author","Gundlach, Jan"],["dc.contributor.author","Krüger, Larissa"],["dc.contributor.author","Herzberg, Christina"],["dc.contributor.author","Turdiev, Asan"],["dc.contributor.author","Poehlein, Anja"],["dc.contributor.author","Tascón, Igor"],["dc.contributor.author","Weiss, Martin"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Hänelt, Inga"],["dc.contributor.author","Lee, Vincent T."],["dc.contributor.author","Stülke, Jörg"],["dc.date.accessioned","2020-12-10T18:12:59Z"],["dc.date.available","2020-12-10T18:12:59Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1074/jbc.RA119.008774"],["dc.identifier.eissn","1083-351X"],["dc.identifier.issn","0021-9258"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74548"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Sustained sensing in potassium homeostasis: Cyclic di-AMP controls potassium uptake by KimA at the levels of expression and activity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","171"],["dc.bibliographiccitation.journal","Metabolic Engineering"],["dc.bibliographiccitation.lastpage","179"],["dc.bibliographiccitation.volume","45"],["dc.contributor.author","Reuß, Daniel R."],["dc.contributor.author","Rath, Hermann"],["dc.contributor.author","Thürmer, Andrea"],["dc.contributor.author","Benda, Martin"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Völker, Uwe"],["dc.contributor.author","Mäder, Ulrike"],["dc.contributor.author","Commichau, Fabian M."],["dc.contributor.author","Stülke, Jörg"],["dc.date.accessioned","2020-12-10T15:21:49Z"],["dc.date.available","2020-12-10T15:21:49Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1016/j.ymben.2017.12.004"],["dc.identifier.issn","1096-7176"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/73172"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Changes of DNA topology affect the global transcription landscape and allow rapid growth of a Bacillus subtilis mutant lacking carbon catabolite repression"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Journal of Bacteriology"],["dc.bibliographiccitation.volume","202"],["dc.contributor.author","Krüger, Larissa"],["dc.contributor.author","Herzberg, Christina"],["dc.contributor.author","Warneke, Robert"],["dc.contributor.author","Poehlein, Anja"],["dc.contributor.author","Stautz, Janina"],["dc.contributor.author","Weiß, Martin"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Hänelt, Inga"],["dc.contributor.author","Stülke, Jörg"],["dc.contributor.editor","Henkin, Tina M."],["dc.date.accessioned","2021-04-14T08:25:20Z"],["dc.date.available","2021-04-14T08:25:20Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1128/JB.00138-20"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81599"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1098-5530"],["dc.relation.issn","0021-9193"],["dc.title","Two Ways To Convert a Low-Affinity Potassium Channel to High Affinity: Control of Bacillus subtilis KtrCD by Glutamate"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.firstpage","3937"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Environmental Microbiology"],["dc.bibliographiccitation.lastpage","3949"],["dc.bibliographiccitation.volume","22"],["dc.contributor.author","Klewing, Anika"],["dc.contributor.author","Koo, Byoung‐Mo"],["dc.contributor.author","Krüger, Larissa"],["dc.contributor.author","Poehlein, Anja"],["dc.contributor.author","Reuß, Daniel"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Gross, Carol A."],["dc.contributor.author","Stülke, Jörg"],["dc.date.accessioned","2021-04-14T08:24:10Z"],["dc.date.available","2021-04-14T08:24:10Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1111/1462-2920.15179"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81192"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1462-2920"],["dc.relation.issn","1462-2912"],["dc.title","Resistance to serine in Bacillus subtilis : identification of the serine transporter YbeC and of a metabolic network that links serine and threonine metabolism"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","5231"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Nucleic Acids Research"],["dc.bibliographiccitation.lastpage","5242"],["dc.bibliographiccitation.volume","47"],["dc.contributor.author","Reuß, Daniel R"],["dc.contributor.author","Faßhauer, Patrick"],["dc.contributor.author","Mroch, Philipp Joel"],["dc.contributor.author","Ul-Haq, Inam"],["dc.contributor.author","Koo, Byoung-Mo"],["dc.contributor.author","Pöhlein, Anja"],["dc.contributor.author","Gross, Carol A"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Brantl, Sabine"],["dc.contributor.author","Stülke, Jörg"],["dc.date.accessioned","2020-12-10T18:19:35Z"],["dc.date.available","2020-12-10T18:19:35Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1093/nar/gkz260"],["dc.identifier.eissn","1362-4962"],["dc.identifier.issn","0305-1048"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16450"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75305"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY-NC 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc/4.0"],["dc.title","Topoisomerase IV can functionally replace all type 1A topoisomerases in Bacillus subtilis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article Research Paper [["dc.bibliographiccitation.artnumber","e1009092"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","PLoS Genetics"],["dc.bibliographiccitation.volume","17"],["dc.contributor.author","Krüger, Larissa"],["dc.contributor.author","Herzberg, Christina"],["dc.contributor.author","Rath, Hermann"],["dc.contributor.author","Pedreira, Tiago"],["dc.contributor.author","Ischebeck, Till"],["dc.contributor.author","Poehlein, Anja"],["dc.contributor.author","Gundlach, Jan"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Völker, Uwe"],["dc.contributor.author","Mäder, Ulrike"],["dc.contributor.author","Stülke, Jörg"],["dc.date.accessioned","2021-04-14T08:29:55Z"],["dc.date.available","2021-04-14T08:29:55Z"],["dc.date.issued","2021"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1371/journal.pgen.1009092"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83034"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.eissn","1553-7404"],["dc.rights","CC BY 4.0"],["dc.title","Essentiality of c-di-AMP in Bacillus subtilis: Bypassing mutations converge in potassium and glutamate homeostasis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2016Journal Article [["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Genome Announcements"],["dc.bibliographiccitation.volume","4"],["dc.contributor.author","Reuß, Daniel R."],["dc.contributor.author","Thürmer, Andrea"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Quax, Wim J."],["dc.contributor.author","Stülke, Jörg"],["dc.date.accessioned","2020-12-10T18:36:57Z"],["dc.date.available","2020-12-10T18:36:57Z"],["dc.date.issued","2016"],["dc.identifier.doi","10.1128/genomeA.00759-16"],["dc.identifier.eissn","2169-8287"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76799"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Complete Genome Sequence of Bacillus subtilis subsp. subtilis Strain ∆6"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.firstpage","279"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Environmental Microbiology Reports"],["dc.bibliographiccitation.lastpage","289"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Dormeyer, Miriam"],["dc.contributor.author","Luebke, Anastasia L."],["dc.contributor.author","Mueller, Peter"],["dc.contributor.author","Lentes, Sabine"],["dc.contributor.author","Reuss, Daniel R."],["dc.contributor.author","Thuermer, Andrea"],["dc.contributor.author","Stuelke, Joerg"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Brantl, Sabine"],["dc.contributor.author","Commichau, Fabian M."],["dc.date.accessioned","2018-11-07T10:23:24Z"],["dc.date.available","2018-11-07T10:23:24Z"],["dc.date.issued","2017"],["dc.description.abstract","Glutamate is the major donor of nitrogen for anabolic reactions. The Gram-positive soil bacterium Bacillus subtilis either utilizes exogenously provided glutamate or synthesizes it using the gltAB-encoded glutamate synthase (GOGAT). In the absence of glutamate, the transcription factor GltC activates expression of the GOGAT genes for glutamate production. Consequently, a gltC mutant strain is auxotrophic for glutamate. Using a genetic selection and screening system, we could isolate and differentiate between gltC suppressor mutants in one step. All mutants had acquired the ability to synthesize glutamate, independent of GltC. We identified (i) gain-of-function mutations in the gltR gene, encoding the transcription factor GltR, (ii) mutations in the promoter of the gltAB operon and (iii) massive amplification of the genomic locus containing the gltAB operon. The mutants belonging to the first two classes constitutively expressed the gltAB genes and produced sufficient glutamate for growth. By contrast, mutants that belong to the third class appeared most frequently and solved glutamate limitation by increasing the copy number of the poorly expressed gltAB genes. Thus, glutamate auxotrophy of a B. subtilis gltC mutant can be relieved in multiple ways. Moreover, recombination-dependent amplification of the gltAB genes is the predominant mutational event indicating a hierarchy of mutations."],["dc.identifier.doi","10.1111/1758-2229.12531"],["dc.identifier.isi","000401193800012"],["dc.identifier.pmid","28294562"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42448"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Wiley"],["dc.relation.issn","1758-2229"],["dc.title","Hierarchical mutational events compensate for glutamate auxotrophy of a Bacillus subtilis gltC mutant"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2021Journal Article [["dc.bibliographiccitation.firstpage","1434"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Microorganisms"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Faßhauer, Patrick"],["dc.contributor.author","Busche, Tobias"],["dc.contributor.author","Kalinowski, Jörn"],["dc.contributor.author","Mäder, Ulrike"],["dc.contributor.author","Poehlein, Anja"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Stülke, Jörg"],["dc.date.accessioned","2021-09-01T06:43:04Z"],["dc.date.available","2021-09-01T06:43:04Z"],["dc.date.issued","2021"],["dc.description.abstract","Many bacteria encode so-called cold shock proteins. These proteins are characterized by a conserved protein domain. Often, the bacteria have multiple cold shock proteins that are expressed either constitutively or at low temperatures. In the Gram-positive model bacterium Bacillussubtilis, two of three cold shock proteins, CspB and CspD, belong to the most abundant proteins suggesting a very important function. To get insights into the role of these highly abundant proteins, we analyzed the phenotypes of single and double mutants, tested the expression of the csp genes and the impact of CspB and CspD on global gene expression in B. subtilis. We demonstrate that the simultaneous loss of both CspB and CspD results in a severe growth defect, in the loss of genetic competence, and the appearance of suppressor mutations. Overexpression of the third cold shock protein CspC could compensate for the loss of CspB and CspD. The transcriptome analysis revealed that the lack of CspB and CspD affects the expression of about 20% of all genes. In several cases, the lack of the cold shock proteins results in an increased read-through at transcription terminators suggesting that CspB and CspD might be involved in the control of transcription termination."],["dc.description.abstract","Many bacteria encode so-called cold shock proteins. These proteins are characterized by a conserved protein domain. Often, the bacteria have multiple cold shock proteins that are expressed either constitutively or at low temperatures. In the Gram-positive model bacterium Bacillussubtilis, two of three cold shock proteins, CspB and CspD, belong to the most abundant proteins suggesting a very important function. To get insights into the role of these highly abundant proteins, we analyzed the phenotypes of single and double mutants, tested the expression of the csp genes and the impact of CspB and CspD on global gene expression in B. subtilis. We demonstrate that the simultaneous loss of both CspB and CspD results in a severe growth defect, in the loss of genetic competence, and the appearance of suppressor mutations. Overexpression of the third cold shock protein CspC could compensate for the loss of CspB and CspD. The transcriptome analysis revealed that the lack of CspB and CspD affects the expression of about 20% of all genes. In several cases, the lack of the cold shock proteins results in an increased read-through at transcription terminators suggesting that CspB and CspD might be involved in the control of transcription termination."],["dc.description.sponsorship","European Commission"],["dc.identifier.doi","10.3390/microorganisms9071434"],["dc.identifier.pii","microorganisms9071434"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89212"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.publisher","MDPI"],["dc.relation.eissn","2076-2607"],["dc.rights","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Functional Redundancy and Specialization of the Conserved Cold Shock Proteins in Bacillus subtilis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","mBio"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Gundlach, Jan"],["dc.contributor.author","Herzberg, Christina"],["dc.contributor.author","Hertel, Dietrich"],["dc.contributor.author","Thürmer, Andrea"],["dc.contributor.author","Daniel, Rolf"],["dc.contributor.author","Link, Hannes"],["dc.contributor.author","Stülke, Jörg"],["dc.contributor.editor","Brennan, Richard Gerald"],["dc.date.accessioned","2020-12-10T18:37:03Z"],["dc.date.available","2020-12-10T18:37:03Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1128/mBio.00861-17"],["dc.identifier.eissn","2150-7511"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/76827"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI