Now showing 1 - 2 of 2
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Journal of Cell Biology"],["dc.bibliographiccitation.volume","220"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Zung, Naama"],["dc.contributor.author","Collado, Javier"],["dc.contributor.author","Drwesh, Layla"],["dc.contributor.author","Fenech, Emma J."],["dc.contributor.author","Fadel, Amir"],["dc.contributor.author","Dezorella, Nili"],["dc.contributor.author","Bykov, Yury S."],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2021-12-01T09:21:03Z"],["dc.date.available","2021-12-01T09:21:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease."],["dc.identifier.doi","10.1083/jcb.202104100"],["dc.identifier.pmid","34694322"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94334"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/365"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/162"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2019Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","476"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Developmental Cell"],["dc.bibliographiccitation.lastpage","487.e7"],["dc.bibliographiccitation.volume","51"],["dc.contributor.author","Collado, Javier"],["dc.contributor.author","Kalemanov, Maria"],["dc.contributor.author","Campelo, Felix"],["dc.contributor.author","Bourgoint, Clélia"],["dc.contributor.author","Thomas, Ffion"],["dc.contributor.author","Loewith, Robbie"],["dc.contributor.author","Martínez-Sánchez, Antonio"],["dc.contributor.author","Baumeister, Wolfgang"],["dc.contributor.author","Stefan, Christopher J."],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.date.accessioned","2020-12-10T14:23:24Z"],["dc.date.available","2020-12-10T14:23:24Z"],["dc.date.issued","2019"],["dc.description.abstract","Membrane contact sites (MCS) between the endoplasmic reticulum (ER) and the plasma membrane (PM) play fundamental roles in all eukaryotic cells. ER-PM MCS are particularly abundant in Saccharomyces cerevisiae, where approximately half of the PM surface is covered by cortical ER (cER). Several proteins, including Ist2, Scs2/22, and Tcb1/2/3 are implicated in cER formation, but the specific roles of these molecules are poorly understood. Here, we use cryo-electron tomography to show that ER-PM tethers are key determinants of cER morphology. Notably, Tcb proteins (tricalbins) form peaks of extreme curvature on the cER membrane facing the PM. Combined modeling and functional assays suggest that Tcb-mediated cER peaks facilitate the transport of lipids between the cER and the PM, which is necessary to maintain PM integrity under heat stress. ER peaks were also present at other MCS, implying that membrane curvature enforcement may be a widespread mechanism to regulate MCS function."],["dc.identifier.doi","10.1016/j.devcel.2019.10.018"],["dc.identifier.pmid","31743662"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71922"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/33"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Tricalbin-Mediated Contact Sites Control ER Curvature to Maintain Plasma Membrane Integrity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC