Options
Fernández Busnadiego, Rubén
Loading...
Preferred name
Fernández Busnadiego, Rubén
Official Name
Fernández Busnadiego, Rubén
Alternative Name
Fernández Busnadiego, R.
Main Affiliation
Now showing 1 - 8 of 8
2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","e1007962"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","PLoS Computational Biology"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Salfer, Maria"],["dc.contributor.author","Collado, Javier F."],["dc.contributor.author","Baumeister, Wolfgang"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Martínez-Sánchez, Antonio"],["dc.date.accessioned","2021-04-14T08:23:54Z"],["dc.date.available","2021-04-14T08:23:54Z"],["dc.date.issued","2020"],["dc.description.abstract","Curvature is a fundamental morphological descriptor of cellular membranes. Cryo-electron tomography (cryo-ET) is particularly well-suited to visualize and analyze membrane morphology in a close-to-native state and molecular resolution. However, current curvature estimation methods cannot be applied directly to membrane segmentations in cryo-ET, as these methods cannot cope with some of the artifacts introduced during image acquisition and membrane segmentation, such as quantization noise and open borders. Here, we developed and implemented a Python package for membrane curvature estimation from tomogram segmentations, which we named PyCurv. From a membrane segmentation, a signed surface (triangle mesh) is first extracted. The triangle mesh is then represented by a graph, which facilitates finding neighboring triangles and the calculation of geodesic distances necessary for local curvature estimation. PyCurv estimates curvature based on tensor voting. Beside curvatures, this algorithm also provides robust estimations of surface normals and principal directions. We tested PyCurv and three well-established methods on benchmark surfaces and biological data. This revealed the superior performance of PyCurv not only for cryo-ET, but also for data generated by other techniques such as light microscopy and magnetic resonance imaging. Altogether, PyCurv is a versatile open-source software to reliably estimate curvature of membranes and other surfaces in a wide variety of applications."],["dc.identifier.doi","10.1371/journal.pcbi.1007962"],["dc.identifier.pmid","32776920"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/81095"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/59"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1553-7358"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.rights","CC BY 4.0"],["dc.title","Reliable estimation of membrane curvature for cryo-electron tomography"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Journal of Cell Biology"],["dc.bibliographiccitation.volume","220"],["dc.contributor.author","Eisenberg-Bord, Michal"],["dc.contributor.author","Zung, Naama"],["dc.contributor.author","Collado, Javier"],["dc.contributor.author","Drwesh, Layla"],["dc.contributor.author","Fenech, Emma J."],["dc.contributor.author","Fadel, Amir"],["dc.contributor.author","Dezorella, Nili"],["dc.contributor.author","Bykov, Yury S."],["dc.contributor.author","Rapaport, Doron"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Schuldiner, Maya"],["dc.date.accessioned","2021-12-01T09:21:03Z"],["dc.date.available","2021-12-01T09:21:03Z"],["dc.date.issued","2021"],["dc.description.abstract","Mitochondrial functions are tightly regulated by nuclear activity, requiring extensive communication between these organelles. One way by which organelles can communicate is through contact sites, areas of close apposition held together by tethering molecules. While many contacts have been characterized in yeast, the contact between the nucleus and mitochondria was not previously identified. Using fluorescence and electron microscopy in S. cerevisiae, we demonstrate specific areas of contact between the two organelles. Using a high-throughput screen, we uncover a role for the uncharacterized protein Ybr063c, which we have named Cnm1 (contact nucleus mitochondria 1), as a molecular tether on the nuclear membrane. We show that Cnm1 mediates contact by interacting with Tom70 on mitochondria. Moreover, Cnm1 abundance is regulated by phosphatidylcholine, enabling the coupling of phospholipid homeostasis with contact extent. The discovery of a molecular mechanism that allows mitochondrial crosstalk with the nucleus sets the ground for better understanding of mitochondrial functions in health and disease."],["dc.identifier.doi","10.1083/jcb.202104100"],["dc.identifier.pmid","34694322"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/94334"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/365"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/162"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-478"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | P11: Zuordnung zellulärer Kontaktstellen und deren Zusammenspiel"],["dc.relation.eissn","1540-8140"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.relation.workinggroup","RG Schuldiner (Functional Genomics of Organelles)"],["dc.rights","CC BY 4.0"],["dc.title","Cnm1 mediates nucleus–mitochondria contact site formation in response to phospholipid levels"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.firstpage","7298"],["dc.bibliographiccitation.issue","19"],["dc.bibliographiccitation.journal","International Journal of Molecular Sciences"],["dc.bibliographiccitation.volume","21"],["dc.contributor.affiliation","Reshetniak, Sofiia; \t\t \r\n\t\t Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, 37073 Göttingen, Germany, sofiia.reshetniak@med.uni-goettingen.de\t\t \r\n\t\t International Max Planck Research School for Molecular Biology, 37077 Göttingen, Germany, sofiia.reshetniak@med.uni-goettingen.de"],["dc.contributor.affiliation","Fernández-Busnadiego, Rubén; \t\t \r\n\t\t Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37077 Göttingen, Germany, ruben.fernandezbusnadiego@med.uni-goettingen.de\t\t \r\n\t\t Institute for Neuropathology, University Medical Center Göttingen, 37075 Göttingen, Germany, ruben.fernandezbusnadiego@med.uni-goettingen.de"],["dc.contributor.affiliation","Müller, Marcus; \t\t \r\n\t\t Institute for Theoretical Physics, University of Göttingen, 37077 Göttingen, Germany, mmueller@theorie.physik.uni-goettingen.de"],["dc.contributor.affiliation","Rizzoli, Silvio O.; \t\t \r\n\t\t Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, 37073 Göttingen, Germany, srizzol@gwdg.de\t\t \r\n\t\t Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, 37077 Göttingen, Germany, srizzol@gwdg.de"],["dc.contributor.affiliation","Tetzlaff, Christian; \t\t \r\n\t\t Third Institute of Physics, University of Göttingen, 37077 Göttingen, Germany, tetzlaff@phys.uni-goettingen.de"],["dc.contributor.author","Reshetniak, Sofiia"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Müller, Marcus"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Tetzlaff, Christian"],["dc.date.accessioned","2021-04-14T08:31:06Z"],["dc.date.available","2021-04-14T08:31:06Z"],["dc.date.issued","2020"],["dc.date.updated","2022-09-06T17:07:09Z"],["dc.identifier.doi","10.3390/ijms21197298"],["dc.identifier.pmid","33023247"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83487"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/152"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/99"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation.eissn","1422-0067"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.relation.workinggroup","RG Tetzlaff (Computational Neuroscience - Learning and Memory)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0/"],["dc.title","Quantitative Synaptic Biology: A Perspective on Techniques, Numbers and Expectations"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Overview [["dc.bibliographiccitation.firstpage","951"],["dc.bibliographiccitation.issue","12"],["dc.bibliographiccitation.journal","Trends in Cell Biology"],["dc.bibliographiccitation.lastpage","966"],["dc.bibliographiccitation.volume","30"],["dc.contributor.author","Bäuerlein, Felix J. B."],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Baumeister, Wolfgang"],["dc.date.accessioned","2021-04-14T08:28:14Z"],["dc.date.available","2021-04-14T08:28:14Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1016/j.tcb.2020.08.007"],["dc.identifier.pmid","32981805"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82547"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/71"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.issn","0962-8924"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.rights","CC BY 4.0"],["dc.title","Investigating the Structure of Neurotoxic Protein Aggregates Inside Cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","overview_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Trinkaus, Victoria A."],["dc.contributor.author","Riera-Tur, Irene"],["dc.contributor.author","Martínez-Sánchez, Antonio"],["dc.contributor.author","Bäuerlein, Felix J. B."],["dc.contributor.author","Guo, Qiang"],["dc.contributor.author","Arzberger, Thomas"],["dc.contributor.author","Baumeister, Wolfgang"],["dc.contributor.author","Dudanova, Irina"],["dc.contributor.author","Hipp, Mark S."],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.date.accessioned","2021-06-01T09:41:39Z"],["dc.date.available","2021-06-01T09:41:39Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract The molecular architecture of α-Synuclein (α-Syn) inclusions, pathognomonic of various neurodegenerative disorders, remains unclear. α-Syn inclusions were long thought to consist mainly of α-Syn fibrils, but recent reports pointed to intracellular membranes as the major inclusion component. Here, we use cryo-electron tomography (cryo-ET) to image neuronal α-Syn inclusions in situ at molecular resolution. We show that inclusions seeded by α-Syn aggregates produced recombinantly or purified from patient brain consist of α-Syn fibrils crisscrossing a variety of cellular organelles. Using gold-labeled seeds, we find that aggregate seeding is predominantly mediated by small α-Syn fibrils, from which cytoplasmic fibrils grow unidirectionally. Detailed analysis of membrane interactions revealed that α-Syn fibrils do not contact membranes directly, and that α-Syn does not drive membrane clustering. Altogether, we conclusively demonstrate that neuronal α-Syn inclusions consist of α-Syn fibrils intermixed with membranous organelles, and illuminate the mechanism of aggregate seeding and cellular interaction."],["dc.identifier.doi","10.1038/s41467-021-22108-0"],["dc.identifier.pmid","33854052"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84996"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/276"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","2041-1723"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.rights","CC BY 4.0"],["dc.title","In situ architecture of neuronal α-Synuclein inclusions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","476"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Developmental Cell"],["dc.bibliographiccitation.lastpage","487.e7"],["dc.bibliographiccitation.volume","51"],["dc.contributor.author","Collado, Javier"],["dc.contributor.author","Kalemanov, Maria"],["dc.contributor.author","Campelo, Felix"],["dc.contributor.author","Bourgoint, Clélia"],["dc.contributor.author","Thomas, Ffion"],["dc.contributor.author","Loewith, Robbie"],["dc.contributor.author","Martínez-Sánchez, Antonio"],["dc.contributor.author","Baumeister, Wolfgang"],["dc.contributor.author","Stefan, Christopher J."],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.date.accessioned","2020-12-10T14:23:24Z"],["dc.date.available","2020-12-10T14:23:24Z"],["dc.date.issued","2019"],["dc.description.abstract","Membrane contact sites (MCS) between the endoplasmic reticulum (ER) and the plasma membrane (PM) play fundamental roles in all eukaryotic cells. ER-PM MCS are particularly abundant in Saccharomyces cerevisiae, where approximately half of the PM surface is covered by cortical ER (cER). Several proteins, including Ist2, Scs2/22, and Tcb1/2/3 are implicated in cER formation, but the specific roles of these molecules are poorly understood. Here, we use cryo-electron tomography to show that ER-PM tethers are key determinants of cER morphology. Notably, Tcb proteins (tricalbins) form peaks of extreme curvature on the cER membrane facing the PM. Combined modeling and functional assays suggest that Tcb-mediated cER peaks facilitate the transport of lipids between the cER and the PM, which is necessary to maintain PM integrity under heat stress. ER peaks were also present at other MCS, implying that membrane curvature enforcement may be a widespread mechanism to regulate MCS function."],["dc.identifier.doi","10.1016/j.devcel.2019.10.018"],["dc.identifier.pmid","31743662"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71922"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/33"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.title","Tricalbin-Mediated Contact Sites Control ER Curvature to Maintain Plasma Membrane Integrity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3200"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","3211"],["dc.bibliographiccitation.volume","218"],["dc.contributor.author","Chen, Yan"],["dc.contributor.author","Yong, Jeffery"],["dc.contributor.author","Martínez-Sánchez, Antonio"],["dc.contributor.author","Yang, Yang"],["dc.contributor.author","Wu, Yumei"],["dc.contributor.author","De Camilli, Pietro"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Wu, Min"],["dc.date.accessioned","2020-12-10T18:15:36Z"],["dc.date.available","2020-12-10T18:15:36Z"],["dc.date.issued","2019"],["dc.description.abstract","Clathrin-mediated endocytosis depends on the formation of functional clathrin-coated pits that recruit cargos and mediate the uptake of those cargos into the cell. However, it remains unclear whether the cargos in the growing clathrin-coated pits are actively monitored by the coat assembly machinery. Using a cell-free reconstitution system, we report that clathrin coat formation and cargo sorting can be uncoupled, indicating that a checkpoint is required for functional cargo incorporation. We demonstrate that the ATPase Hsc70 and a dynamic exchange of clathrin during assembly are required for this checkpoint. In the absence of Hsc70 function, clathrin assembles into pits but fails to enrich cargo. Using single-molecule imaging, we further show that uncoating takes place throughout the lifetime of the growing clathrin-coated pits. Our results suggest that the dynamic exchange of clathrin, at the cost of the reduced overall assembly rates, primarily serves as a proofreading mechanism for quality control of endocytosis."],["dc.identifier.doi","10.1083/jcb.201804136"],["dc.identifier.pmid","31451612"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74897"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/200"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.rights","CC BY 4.0"],["dc.title","Dynamic instability of clathrin assembly provides proofreading control for endocytosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article Research Paper [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","BMC Evolutionary Biology"],["dc.bibliographiccitation.volume","20"],["dc.contributor.author","Seefelder, Manuel"],["dc.contributor.author","Alva, Vikram"],["dc.contributor.author","Huang, Bin"],["dc.contributor.author","Engler, Tatjana"],["dc.contributor.author","Baumeister, Wolfgang"],["dc.contributor.author","Guo, Qiang"],["dc.contributor.author","Fernández Busnadiego, Rubén"],["dc.contributor.author","Lupas, Andrei N."],["dc.contributor.author","Kochanek, Stefan"],["dc.date.accessioned","2021-04-14T08:32:25Z"],["dc.date.available","2021-04-14T08:32:25Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1186/s12862-020-01705-5"],["dc.identifier.pmid","33297953"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17701"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83913"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/99"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation.eissn","1471-2148"],["dc.relation.workinggroup","RG Fernández-Busnadiego (Structural Cell Biology)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","The evolution of the huntingtin-associated protein 40 (HAP40) in conjunction with huntingtin"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC