Now showing 1 - 4 of 4
  • 2012Journal Article
    [["dc.bibliographiccitation.journal","Journal of Cell Science"],["dc.contributor.author","Renner, Ute"],["dc.contributor.author","Zeug, Andre"],["dc.contributor.author","Woehler, Andrew"],["dc.contributor.author","Niebert, Markus"],["dc.contributor.author","Dityatev, Alexander"],["dc.contributor.author","Dityateva, Galina"],["dc.contributor.author","Gorinski, Nataliya"],["dc.contributor.author","Guseva, Daria"],["dc.contributor.author","Abdel-Galil, Dalia"],["dc.contributor.author","Fröhlich, Matthias"],["dc.contributor.author","Ponimaskin, Evgeni G."],["dc.date.accessioned","2022-03-01T11:44:05Z"],["dc.date.available","2022-03-01T11:44:05Z"],["dc.date.issued","2012"],["dc.description.abstract","Serotonin receptors 5-HT1A and 5-HT7 are highly co-expressed in brain regions implicated in depression. However, their functional interaction has not been established. In the present study we show that 5-HT1A and 5-HT7 receptors form heterodimers both in vitro and in vivo. Foerster resonance energy transfer-based assays revealed that, in addition to heterodimers, homodimers composed either by 5-HT1A or 5-HT7 receptors together with monomers co-exist in cells. The highest affinity to form the complex was obtained for the 5-HT7-5-HT7 homodimers, followed by the 5-HT7-5-HT1A heterodimers and 5-HT1A-5-HT1A homodimers. Functionally, heterodimerization decreases 5-HT1A receptor-mediated activation of Gi-protein without affecting 5-HT7 receptor-mediated signalling. Moreover, heterodimerization markedly decreases the ability of the 5-HT1A receptor to activate G-protein gated inwardly rectifying potassium channels in a heterologous system. The inhibitory effect on such channels was also preserved in hippocampal neurons, demonstrating a physiological relevance of heteromerization in vivo. In addition, heterodimerization is critically involved in initiation of the serotonin-mediated 5-HT1A receptor internalization and also enhances the ability of the 5-HT1A receptor to activate the mitogen-activated protein kinases. Finally, we found that production of 5-HT7 receptors in hippocampus continuously decreases during postnatal development, indicating that the relative concentration of 5-HT1A-5-HT7 heterodimers and, consequently, their functional importance undergoes pronounced developmental changes."],["dc.description.abstract","Serotonin receptors 5-HT1A and 5-HT7 are highly co-expressed in brain regions implicated in depression. However, their functional interaction has not been established. In the present study we show that 5-HT1A and 5-HT7 receptors form heterodimers both in vitro and in vivo. Foerster resonance energy transfer-based assays revealed that, in addition to heterodimers, homodimers composed either by 5-HT1A or 5-HT7 receptors together with monomers co-exist in cells. The highest affinity to form the complex was obtained for the 5-HT7-5-HT7 homodimers, followed by the 5-HT7-5-HT1A heterodimers and 5-HT1A-5-HT1A homodimers. Functionally, heterodimerization decreases 5-HT1A receptor-mediated activation of Gi-protein without affecting 5-HT7 receptor-mediated signalling. Moreover, heterodimerization markedly decreases the ability of the 5-HT1A receptor to activate G-protein gated inwardly rectifying potassium channels in a heterologous system. The inhibitory effect on such channels was also preserved in hippocampal neurons, demonstrating a physiological relevance of heteromerization in vivo. In addition, heterodimerization is critically involved in initiation of the serotonin-mediated 5-HT1A receptor internalization and also enhances the ability of the 5-HT1A receptor to activate the mitogen-activated protein kinases. Finally, we found that production of 5-HT7 receptors in hippocampus continuously decreases during postnatal development, indicating that the relative concentration of 5-HT1A-5-HT7 heterodimers and, consequently, their functional importance undergoes pronounced developmental changes."],["dc.identifier.doi","10.1242/jcs.101337"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/102922"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.eissn","1477-9137"],["dc.relation.issn","0021-9533"],["dc.title","Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","1821"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","1827"],["dc.bibliographiccitation.volume","103"],["dc.contributor.author","Zeug, André"],["dc.contributor.author","Woehler, Andrew"],["dc.contributor.author","Neher, Erwin"],["dc.contributor.author","Ponimaskin, Evgeni G."],["dc.date.accessioned","2022-03-01T11:44:56Z"],["dc.date.available","2022-03-01T11:44:56Z"],["dc.date.issued","2012"],["dc.identifier.doi","10.1016/j.bpj.2012.09.031"],["dc.identifier.pii","S0006349512010727"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/103164"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-531"],["dc.relation.issn","0006-3495"],["dc.title","Quantitative Intensity-Based FRET Approaches—A Comparative Snapshot"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2008Journal Article
    [["dc.bibliographiccitation.firstpage","1503"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Molecular Cell Research"],["dc.bibliographiccitation.lastpage","1516"],["dc.bibliographiccitation.volume","1783"],["dc.contributor.author","Kobe, Fritz"],["dc.contributor.author","Renner, Ute"],["dc.contributor.author","Woehler, Andrew"],["dc.contributor.author","Wlodarczyk, Jakub"],["dc.contributor.author","Papusheva, Ekaterina"],["dc.contributor.author","Bao, Guobin"],["dc.contributor.author","Zeug, Andre"],["dc.contributor.author","Richter, Diethelm W."],["dc.contributor.author","Neher, Erwin"],["dc.contributor.author","Ponimaskin, Evgeni G."],["dc.date.accessioned","2018-11-07T11:12:17Z"],["dc.date.available","2018-11-07T11:12:17Z"],["dc.date.issued","2008"],["dc.description.abstract","In the present study we analyzed the oligomerization state of the serotonin 5-HT1A receptor and studied oligomerization dynamics in living cells. We also investigated the role of receptor palmitoylation in this process. Biochemical analysis performed in neuroblastoma N1E-115 cells demonstrated that both palmitoylated and non-palmitoylated 5-HT1A receptors form homo-oligomers and that the prevalent receptor species at the plasma membrane are dimers. A combination of an acceptor-photobleaching FRET approach with fluorescence lifetime measurements verified the interaction of CFP- and YFP-labeled wild-type as well as acylation-deficient 5-HT1A receptors at the plasma membrane of living cells. Using a novel FRET technique based on the spectral analysis we also confirmed the specific nature of receptor oligomerization. The analysis of oligomerization dynamics revealed that apparent FRET efficiency measured for wild-type oligomers significantly decreased in response to agonist stimulation, and our combined results suggest that this decrease was mediated by accumulation of FRET-negative complexes rather than by dissociation of oligomers to monomers. In contrast, the agonist-mediated decrease of FRET signal was completely abolished in oligomers composed by non-palmitoylated receptor mutants, demonstrating the importance of palmitoylation in modulation of the structure of oligomers. (C) 2008 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bbamcr.2008.02.021"],["dc.identifier.isi","000257641600004"],["dc.identifier.pmid","18381076"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7758"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/53629"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.relation.issn","0167-4889"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Stimulation- and palmitoylation-dependent changes in oligomeric conformation of serotonin 5-HT1A receptors"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Journal Article
    [["dc.bibliographiccitation.firstpage","986"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","1000"],["dc.bibliographiccitation.volume","94"],["dc.contributor.author","Wlodarczyk, Jakub"],["dc.contributor.author","Woehler, Andrew"],["dc.contributor.author","Kobe, Fritz"],["dc.contributor.author","Ponimaskin, Evgeni G."],["dc.contributor.author","Zeug, Andre"],["dc.contributor.author","Neher, Erwin"],["dc.date.accessioned","2018-11-07T11:18:28Z"],["dc.date.available","2018-11-07T11:18:28Z"],["dc.date.issued","2008"],["dc.description.abstract","A method for spectral analysis of Forster resonance energy transfer (FRET) signals is presented, taking into consideration both the contributions of unpaired donor and acceptor fluorophores and the in fluence of incomplete labeling of the interacting partners. It is shown that spectral analysis of intermolecular FRET cannot yield accurate values of the Forster energy transfer efficiency E, unless one of the interactors is in large excess and perfectly labeled. Instead, analysis of donor quenching yields a product of the form Ef(d)p(a), where f(d) is the fraction of donor-type molecules participating in donor-acceptor complexes and p(a) is the labeling probability of the acceptor. Similarly, analysis of sensitized emission yields a product involving Ef(a). The analysis of intramolecular FRET (e. g., of tandem constructs) yields the product Ep(a). We use our method to determine these values for a tandem construct of cyan fluorescent protein and yellow fluorescent protein and compare them with those obtained by standard acceptor photobleaching and fluorescence lifetime measurements. We call the method lux-FRET, since it relies on linear unmixing of spectral components."],["dc.identifier.doi","10.1529/biophysj.107.111773"],["dc.identifier.isi","000252243200025"],["dc.identifier.pmid","17921223"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/7747"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/55040"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Cell Press"],["dc.relation.issn","0006-3495"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Analysis of FRET signals in the presence of free donors and acceptors"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS