Now showing 1 - 6 of 6
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","523"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Acta Neuropathologica"],["dc.bibliographiccitation.lastpage","538"],["dc.bibliographiccitation.volume","127"],["dc.contributor.author","Wrzos, Claudia"],["dc.contributor.author","Winkler, Anne"],["dc.contributor.author","Metz, Imke"],["dc.contributor.author","Kayser, Dieter M."],["dc.contributor.author","Thal, Dietmar Rudolf"],["dc.contributor.author","Wegner, Christiane"],["dc.contributor.author","Brueck, Wolfgang"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Bennett, Jeffrey L."],["dc.contributor.author","Stadelmann, Christine"],["dc.date.accessioned","2018-11-07T09:42:12Z"],["dc.date.available","2018-11-07T09:42:12Z"],["dc.date.issued","2014"],["dc.description.abstract","Neuromyelitis optica (NMO) is a chronic, mostly relapsing inflammatory demyelinating disease of the CNS characterized by serum anti-aquaporin 4 (AQP4) antibodies in the majority of patients. Anti-AQP4 antibodies derived from NMO patients target and deplete astrocytes in experimental models when co-injected with complement. However, the time course and mechanisms of oligodendrocyte loss and demyelination and the fate of oligodendrocyte precursor cells (OPC) have not been examined in detail. Also, no studies regarding astrocyte repopulation of experimental NMO lesions have been reported. We utilized two rat models using either systemic transfer or focal intracerebral injection of recombinant human anti-AQP4 antibodies to generate NMO-like lesions. Time-course experiments were performed to examine oligodendroglial and astroglial damage and repair. In addition, oligodendrocyte pathology was studied in early human NMO lesions. Apart from early complement-mediated astrocyte destruction, we observed a prominent, very early loss of oligodendrocytes and oligodendrocyte precursor cells (OPCs) as well as a delayed loss of myelin. Astrocyte repopulation of focal NMO lesions was already substantial after 1 week. Olig2-positive OPCs reappeared before NogoA-positive, mature oligodendrocytes. Thus, using two experimental models that closely mimic the human disease, our study demonstrates that oligodendrocyte and OPC loss is an extremely early feature in the formation of human and experimental NMO lesions and leads to subsequent, delayed demyelination, highlighting an important difference in the pathogenesis of MS and NMO."],["dc.identifier.doi","10.1007/s00401-013-1220-8"],["dc.identifier.isi","000332957400005"],["dc.identifier.pmid","24292009"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33902"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","1432-0533"],["dc.relation.issn","0001-6322"],["dc.title","Early loss of oligodendrocytes in human and experimental neuromyelitis optica lesions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","452"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Brain Pathology"],["dc.bibliographiccitation.lastpage","464"],["dc.bibliographiccitation.volume","26"],["dc.contributor.author","Stassart, Ruth Martha"],["dc.contributor.author","Helms, Gunther"],["dc.contributor.author","Garea-Rodriguez, Enrique"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Hayardeny, Liat"],["dc.contributor.author","Wegner, Christiane"],["dc.contributor.author","Schlumbohm, Christina"],["dc.contributor.author","Fuchs, Eberhard"],["dc.contributor.author","Brueck, Wolfgang"],["dc.date.accessioned","2018-11-07T10:12:06Z"],["dc.date.available","2018-11-07T10:12:06Z"],["dc.date.issued","2016"],["dc.description.abstract","Multiple sclerosis (MS) is the most common cause for sustained disability in young adults, yet treatment options remain very limited. Although numerous therapeutic approaches have been effective in rodent models of experimental autoimmune encephalomyelitis (EAE), only few proved to be beneficial in patients with MS. Hence, there is a strong need for more predictive animal models. Within the past decade, EAE in the common marmoset evolved as a potent, alternative model for MS, with immunological and pathological features resembling more closely the human disease. However, an often very rapid and severe disease course hampers its implementation for systematic testing of new treatment strategies. We here developed a new focal model of EAE in the common marmoset, induced by myelin oligodendrocyte glycoprotein (MOG) immunization and stereotactic injections of proinflammatory cytokines. At the injection site of cytokines, confluent inflammatory demyelinating lesions developed that strongly resembled human MS lesions. In a proof-of-principle treatment study with the immunomodulatory compound laquinimod, we demonstrate that targeted EAE in marmosets provides a promising and valid tool for preclinical experimental treatment trials in MS research."],["dc.identifier.doi","10.1111/bpa.12292"],["dc.identifier.isi","000380034000002"],["dc.identifier.pmid","26207848"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/40173"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1750-3639"],["dc.relation.issn","1015-6305"],["dc.title","A New Targeted Model of Experimental Autoimmune Encephalomyelitis in the Common Marmoset"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article
    [["dc.bibliographiccitation.firstpage","756"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Journal of Neuropathology and Experimental Neurology"],["dc.bibliographiccitation.lastpage","766"],["dc.bibliographiccitation.volume","74"],["dc.contributor.author","Pfeifenbring, Sabine"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Wegner, Christiane"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Brueck, Wolfgang"],["dc.date.accessioned","2018-11-07T09:54:01Z"],["dc.date.available","2018-11-07T09:54:01Z"],["dc.date.issued","2015"],["dc.description.abstract","Remyelination capacity decreases with age in adult mice, but data comparing remyelination capacity after toxic demyelination in developing mice versus adult mice are not available. We treated 3-week-old and adult C57BL/6 mice with cuprizone for 1 to 5 weeks and studied demyelination/remyelination and cellular reactions in the corpus callosum and motor cortex by histology, immunohistochemistry, and electron microscopy. We compared results between the 2 treated groups and age-matched controls. In juvenile mice, significant demyelination was detectable in the corpus callosum on Week 2 and in the motor cortex on Week 5. Oligodendrocyte loss, microglial activation, and acute axonal damage peaked on Week 2. Increased numbers of oligodendrocyte precursor cells were evident on Week 1, and remyelination was detectable on Week 3. Juvenile mice showed more rapid demyelination than adult mice, which may be related to greater vulnerability of oligodendrocytes, lower myelin content, or dose-dependent cuprizone effects. Earlier activation of microglia and proliferation of oligodendrocyte precursor cells probably contributed to accelerated remyelination and less pronounced axonal damage. Our data indicate that oligodendroglial regeneration and remyelination are enhanced in the maturing rodent brain compared with the young-adult rodent brain."],["dc.identifier.doi","10.1097/NEN.0000000000000214"],["dc.identifier.isi","000358657300001"],["dc.identifier.pmid","26115190"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/36452"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Lippincott Williams & Wilkins"],["dc.relation.issn","0022-3069"],["dc.title","Remyelination After Cuprizone-Induced Demyelination Is Accelerated in Juvenile Mice"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","15"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Acta Neuropathologica"],["dc.bibliographiccitation.lastpage","34"],["dc.bibliographiccitation.volume","134"],["dc.contributor.author","Lagumersindez-Denis, Nielsen"],["dc.contributor.author","Wrzos, Claudia"],["dc.contributor.author","Mack, Matthias"],["dc.contributor.author","Winkler, Anne"],["dc.contributor.author","van der Meer, Franziska"],["dc.contributor.author","Reinert, Marie-Christine"],["dc.contributor.author","Hollasch, Heiko"],["dc.contributor.author","Flach, Anne"],["dc.contributor.author","Bruehl, Hilke"],["dc.contributor.author","Cullen, Eilish"],["dc.contributor.author","Schlumbohm, Christina"],["dc.contributor.author","Fuchs, Eberhard"],["dc.contributor.author","Linington, Christopher"],["dc.contributor.author","Barrantes-Freer, Alonso"],["dc.contributor.author","Metz, Imke"],["dc.contributor.author","Wegner, Christiane"],["dc.contributor.author","Liebetanz, David"],["dc.contributor.author","Prinz, Marco R."],["dc.contributor.author","Brueck, Wolfgang"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Nessler, Stefan"],["dc.date.accessioned","2018-11-07T10:22:07Z"],["dc.date.available","2018-11-07T10:22:07Z"],["dc.date.issued","2017"],["dc.description.abstract","Cortical demyelination is a widely recognized hallmark of multiple sclerosis (MS) and correlate of disease progression and cognitive decline. The pathomechanisms initiating and driving gray matter damage are only incompletely understood. Here, we determined the infiltrating leukocyte subpopulations in 26 cortical demyelinated lesions of biopsied MS patients and assessed their contribution to cortical lesion formation in a newly developed mouse model. We find that conformation-specific anti-myelin antibodies contribute to cortical demyelination even in the absence of the classical complement pathway. T cells and natural killer cells are relevant for intracortical type 2 but dispensable for subpial type 3 lesions, whereas CCR2(+) monocytes are required for both. Depleting CCR2(+) monocytes in marmoset monkeys with experimental autoimmune encephalomyelitis using a novel humanized CCR2 targeting antibody translates into significantly less cortical demyelination and disease severity. We conclude that biologics depleting CCR2(+) monocytes might be attractive candidates for preventing cortical lesion formation and ameliorating disease progression in MS."],["dc.identifier.doi","10.1007/s00401-017-1706-x"],["dc.identifier.isi","000403235900002"],["dc.identifier.pmid","28386765"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14713"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/42218"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Springer"],["dc.relation.issn","1432-0533"],["dc.relation.issn","0001-6322"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Differential contribution of immune effector mechanisms to cortical demyelination in multiple sclerosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2019Journal Article
    [["dc.bibliographiccitation.artnumber","49"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Neuroinflammation"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Ott, Martina"],["dc.contributor.author","Avendaño-Guzmán, Erika"],["dc.contributor.author","Ullrich, Evelyn"],["dc.contributor.author","Dreyer, Carolin"],["dc.contributor.author","Strauss, Judith"],["dc.contributor.author","Harden, Markus"],["dc.contributor.author","Schön, Margarete"],["dc.contributor.author","Schön, Michael P"],["dc.contributor.author","Bernhardt, Günter"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Wegner, Christiane"],["dc.contributor.author","Brück, Wolfgang"],["dc.contributor.author","Nessler, Stefan"],["dc.date.accessioned","2019-07-09T11:50:03Z"],["dc.date.available","2019-07-09T11:50:03Z"],["dc.date.issued","2019"],["dc.description.abstract","Abstract Background Quinoline-3-carboxamides, such as laquinimod, ameliorate CNS autoimmunity in patients and reduce tumor cell metastasis experimentally. Previous studies have focused on the immunomodulatory effect of laquinimod on myeloid cells. The data contained herein suggest that quinoline-3-carboxamides improve the immunomodulatory and anti-tumor effects of NK cells by upregulating the adhesion molecule DNAX accessory molecule-1 (DNAM-1). Methods We explored how NK cell activation by laquinimod inhibits CNS autoimmunity in experimental autoimmune encephalomyelitis (EAE), the most utilized model of MS, and improves immunosurveillance of experimental lung melanoma metastasis. Functional manipulations included in vivo NK and DC depletion experiments and in vitro assays of NK cell function. Clinical, histological, and flow cytometric read-outs were assessed. Results We demonstrate that laquinimod activates natural killer (NK) cells via the aryl hydrocarbon receptor and increases their DNAM-1 cell surface expression. This activation improves the cytotoxicity of NK cells against B16F10 melanoma cells and augments their immunoregulatory functions in EAE by interacting with CD155+ dendritic cells (DC). Noteworthy, the immunosuppressive effect of laquinimod-activated NK cells was due to decreasing MHC class II antigen presentation by DC and not by increasing DC killing. Conclusions This study clarifies how DNAM-1 modifies the bidirectional crosstalk of NK cells with CD155+ DC, which can be exploited to suppress CNS autoimmunity and strengthen tumor surveillance."],["dc.identifier.doi","10.1186/s12974-019-1437-0"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15844"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59689"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","BioMed Central"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Laquinimod, a prototypic quinoline-3-carboxamide and aryl hydrocarbon receptor agonist, utilizes a CD155-mediated natural killer/dendritic cell interaction to suppress CNS autoimmunity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Conference Abstract
    [["dc.bibliographiccitation.issue","1-2"],["dc.bibliographiccitation.journal","Journal of Neuroimmunology"],["dc.bibliographiccitation.volume","253"],["dc.contributor.author","Ott, Martina"],["dc.contributor.author","Wegner, Christiane"],["dc.contributor.author","Nessler, Stefan"],["dc.contributor.author","Brueck, Wolfgang"],["dc.date.accessioned","2018-11-07T09:02:18Z"],["dc.date.available","2018-11-07T09:02:18Z"],["dc.date.issued","2012"],["dc.format.extent","174"],["dc.identifier.isi","000312764800467"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24649"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Elsevier Science Bv"],["dc.publisher.place","Amsterdam"],["dc.relation.conference","11th International Congress of Neuroimmunology (ISNI)"],["dc.relation.eventlocation","Boston, MA"],["dc.relation.issn","0165-5728"],["dc.title","Preventive treatment with laquinimod reduces myeloid dendritic cells and shifts pro-inflammatory to regulatory T cells in experimental autoimmune encephalomyelitis"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details WOS