Now showing 1 - 5 of 5
  • 2020Preprint
    [["dc.contributor.author","Khani, Mohammad Hossein"],["dc.contributor.author","Gollisch, Tim"],["dc.date.accessioned","2021-03-05T08:58:52Z"],["dc.date.available","2021-03-05T08:58:52Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1101/2020.06.29.176859"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/80283"],["dc.notes.intern","DOI Import GROB-393"],["dc.title","Linear and nonlinear chromatic integration in the mouse retina"],["dc.type","preprint"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2022Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","104721"],["dc.bibliographiccitation.journal","Journal of Proteomics"],["dc.bibliographiccitation.volume","269"],["dc.contributor.author","Brás, Inês C."],["dc.contributor.author","Khani, Mohammad H."],["dc.contributor.author","Riedel, Dietmar"],["dc.contributor.author","Parfentev, Iwan"],["dc.contributor.author","Gerhardt, Ellen"],["dc.contributor.author","van Riesen, Christoph"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Gollisch, Tim"],["dc.contributor.author","Outeiro, Tiago F."],["dc.date.accessioned","2022-10-04T10:21:29Z"],["dc.date.available","2022-10-04T10:21:29Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/501100001659 Deutsche Forschungsgemeinschaft"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/501100004939 Göttinger Graduiertenschule für Neurowissenschaften, Biophysik und Molekulare Biowissenschaften"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/501100007601 Horizon 2020"],["dc.description.sponsorship"," http://dx.doi.org/10.13039/501100000781 European Research Council"],["dc.identifier.doi","10.1016/j.jprot.2022.104721"],["dc.identifier.pii","S1874391922002457"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114423"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-600"],["dc.relation.issn","1874-3919"],["dc.rights.uri","https://www.elsevier.com/tdm/userlicense/1.0/"],["dc.title","Ectosomes and exosomes modulate neuronal spontaneous activity"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Khani, Mohammad Hossein"],["dc.contributor.author","Gollisch, Tim"],["dc.date.accessioned","2021-06-01T09:41:39Z"],["dc.date.available","2021-06-01T09:41:39Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract The computations performed by a neural circuit depend on how it integrates its input signals into an output of its own. In the retina, ganglion cells integrate visual information over time, space, and chromatic channels. Unlike the former two, chromatic integration is largely unexplored. Analogous to classical studies of spatial integration, we here study chromatic integration in mouse retina by identifying chromatic stimuli for which activation from the green or UV color channel is maximally balanced by deactivation through the other color channel. This reveals nonlinear chromatic integration in subsets of On, Off, and On–Off ganglion cells. Unlike the latter two, nonlinear On cells display response suppression rather than activation under balanced chromatic stimulation. Furthermore, nonlinear chromatic integration occurs independently of nonlinear spatial integration, depends on contributions from the rod pathway and on surround inhibition, and may provide information about chromatic boundaries, such as the skyline in natural scenes."],["dc.description.sponsorship","Open-Access-Finanzierung durch die Universitätsmedizin Göttingen 2021"],["dc.identifier.doi","10.1038/s41467-021-22042-1"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/84994"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","SFB 1456: Mathematik des Experiments: Die Herausforderung indirekter Messungen in den Naturwissenschaften"],["dc.relation","SFB 1456 | Cluster B: Data with Incomplete Information"],["dc.relation","SFB 1456 | Cluster B | B05: Inference of functional networks in the neuronal circuit of the retina from large-scale spike-train recordings"],["dc.relation.eissn","2041-1723"],["dc.rights","CC BY 4.0"],["dc.title","Linear and nonlinear chromatic integration in the mouse retina"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","3024"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Journal of Neurophysiology"],["dc.bibliographiccitation.lastpage","3043"],["dc.bibliographiccitation.volume","118"],["dc.contributor.author","Khani, Mohammad Hossein"],["dc.contributor.author","Gollisch, Tim"],["dc.date.accessioned","2020-12-10T18:37:40Z"],["dc.date.available","2020-12-10T18:37:40Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1152/jn.00529.2017"],["dc.identifier.eissn","1522-1598"],["dc.identifier.issn","0022-3077"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16972"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77056"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Diversity in spatial scope of contrast adaptation among mouse retinal ganglion cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","149"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nature Communications"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Liu, Jian K."],["dc.contributor.author","Schreyer, Helene M."],["dc.contributor.author","Onken, Arno"],["dc.contributor.author","Rozenblit, Fernando"],["dc.contributor.author","Khani, Mohammad H."],["dc.contributor.author","Krishnamoorthy, Vidhyasankar"],["dc.contributor.author","Panzeri, Stefano"],["dc.contributor.author","Gollisch, Tim"],["dc.date.accessioned","2019-02-27T09:39:23Z"],["dc.date.available","2019-02-27T09:39:23Z"],["dc.date.issued","2017"],["dc.description.abstract","Neurons in sensory systems often pool inputs over arrays of presynaptic cells, giving rise to functional subunits inside a neuron's receptive field. The organization of these subunits provides a signature of the neuron's presynaptic functional connectivity and determines how the neuron integrates sensory stimuli. Here we introduce the method of spike-triggered non-negative matrix factorization for detecting the layout of subunits within a neuron's receptive field. The method only requires the neuron's spiking responses under finely structured sensory stimulation and is therefore applicable to large populations of simultaneously recorded neurons. Applied to recordings from ganglion cells in the salamander retina, the method retrieves the receptive fields of presynaptic bipolar cells, as verified by simultaneous bipolar and ganglion cell recordings. The identified subunit layouts allow improved predictions of ganglion cell responses to natural stimuli and reveal shared bipolar cell input into distinct types of ganglion cells.How a neuron integrates sensory information requires knowledge about its functional presynaptic connections. Here the authors report a new method using non-negative matrix factorization to identify the layout of presynaptic bipolar cell inputs onto retinal ganglion cells and predict their responses to natural stimuli."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1038/s41467-017-00156-9"],["dc.identifier.eissn","2041-1723"],["dc.identifier.pmid","28747662"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14543"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/57634"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC