Options
Köster, Sarah
Loading...
Preferred name
Köster, Sarah
Official Name
Köster, Sarah
Alternative Name
Koester, Sarah
Koester, S.
Köster, S. F.
Köster, S.
Main Affiliation
Institut für Röntgenphysik
Email
sarah.koester@uni-goettingen.de
ORCID
Scopus Author ID
56186599600
Researcher ID
M-1983-2014
Now showing 1 - 10 of 14
2019Journal Article Research Paper [["dc.bibliographiccitation.artnumber","188102"],["dc.bibliographiccitation.issue","18"],["dc.bibliographiccitation.journal","Physical Review Letters"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Forsting, Johanna"],["dc.contributor.author","Schepers, Anna V."],["dc.contributor.author","Kraxner, Julia"],["dc.contributor.author","Bauch, Susanne"],["dc.contributor.author","Witt, Hannes"],["dc.contributor.author","Klumpp, Stefan"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2020-12-10T18:25:50Z"],["dc.date.available","2020-12-10T18:25:50Z"],["dc.date.issued","2019"],["dc.description.abstract","The cytoskeleton is a composite network of three types of protein filaments, among which intermediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin."],["dc.identifier.doi","10.1103/PhysRevLett.123.188102"],["dc.identifier.eissn","1079-7114"],["dc.identifier.issn","0031-9007"],["dc.identifier.pmid","31763918"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75854"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.relation","info:eu-repo/grantAgreement/EC/H2020/724932/EU//MECHANICS"],["dc.relation.eissn","1079-7114"],["dc.relation.issn","0031-9007"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.access","openAccess"],["dc.rights.uri","http://creativecommons.org/licenses/by-nc-nd/4.0/"],["dc.subject","intermediate filaments; optical tweezers; atomic force microscopy; cytoskeleton; biomechanics; Monte Carlo simulation"],["dc.subject.ddc","530"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.title","Lateral Subunit Coupling Determines Intermediate Filament Mechanics"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dc.type.version","submitted_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2019Preprint [["dc.contributor.author","Schepers, Anna V."],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2020-03-03T08:22:25Z"],["dc.date.available","2020-03-03T08:22:25Z"],["dc.date.issued","2019"],["dc.description.abstract","The cytoskeleton is formed by three types of filamentous proteins – microtubules, actin filaments, and intermediate filaments (IFs) – and enables cells to withstand external and internal forces. Vimentin is the most abundant IF in humans and has remarkable mechanical properties, such as high extensibility and stability. It is, however, unclear to which extent these properties are influenced by the electrostatic environment. Here, we study the mechanical properties of single vimentin filaments by employing optical trapping combined with microfluidics. Force-strain curves, recorded at varying ion concentrations and pH values, reveal that the mechanical properties of single vimentin IFs are influenced by direct (pH) and indirect (ionic) charge variations. By combination with Monte Carlo simulations, we connect these altered mechanics to electrostatic interactions of subunits within the filaments. We thus find possible mechanisms that allow cells to locally tune their stiffness without remodelling the entire cytoskeleton."],["dc.identifier.doi","10.1101/784025"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63070"],["dc.language.iso","en"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.subject.gro","x-ray scattering"],["dc.subject.gro","membrane biophysics"],["dc.title","Tuning intermediate filament mechanics by indirect and direct charge variations"],["dc.type","preprint"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Preprint [["dc.contributor.author","Schaedel, Laura"],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Schepers, Anna V."],["dc.contributor.author","Klumpp, Stefan"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2020-06-26T11:11:20Z"],["dc.date.available","2020-06-26T11:11:20Z"],["dc.date.issued","2020"],["dc.description.abstract","The cytoskeleton determines cell mechanics and lies at the heart of important cellular functions. Growing evidence suggests that the manifold tasks of the cytoskeleton rely on the interactions between its filamentous components, known as actin filaments, intermediate filaments and microtubules. However, the nature of these interactions and their impact on cytoskeletal dynamics are largely unknown. Here, we show in a re-constituted in vitro system that vimentin intermediate filaments stabilize microtubules against depolymerization and support microtubule rescue. To understand these stabilizing effects, we directly measure the interaction forces between individual microtubules and vimentin filaments. Combined with numerical simulations, our observations provide detailed insight into the physical nature of the interactions and how they affect microtubule dynamics. Thus, we describe an additional, direct mechanism for cells to establish the fundamental cross-talk of cytoskeletal components alongside linker proteins. Moreover, we suggest a novel strategy to estimate the binding energy of tubulin dimers within the microtubule lattice."],["dc.identifier.doi","10.1101/2020.05.20.106179"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/66754"],["dc.language.iso","en"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.subject.gro","x-ray imaging"],["dc.subject.gro","x-ray scattering"],["dc.title","Vimentin Intermediate Filaments Stabilize Dynamic Microtubules by Direct Interactions"],["dc.type","preprint"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Book Chapter [["dc.bibliographiccitation.firstpage","677"],["dc.bibliographiccitation.lastpage","700"],["dc.contributor.author","Schepers, Anna V."],["dc.contributor.author","Kraxner, Julia"],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.editor","Gennerich, Arne"],["dc.date.accessioned","2022-10-04T10:21:28Z"],["dc.date.available","2022-10-04T10:21:28Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1007/978-1-0716-2229-2_24"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114418"],["dc.notes.intern","DOI-Import GROB-600"],["dc.publisher","Springer US"],["dc.publisher.place","New York, NY"],["dc.relation.eisbn","978-1-0716-2229-2"],["dc.relation.isbn","978-1-0716-2228-5"],["dc.relation.ispartof","Optical Tweezers : Methods and Protocols"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.rights.uri","https://www.springer.com/tdm"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.title","Mechanics of Single Vimentin Intermediate Filaments Under Load"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Preprint [["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Forsting, Johanna"],["dc.contributor.author","Schepers, Anna V."],["dc.contributor.author","Kraxner, Julia"],["dc.contributor.author","Bauch, Susanne"],["dc.contributor.author","Witt, Hannes"],["dc.contributor.author","Klumpp, Stefan"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2020-03-03T08:23:45Z"],["dc.date.available","2020-03-03T08:23:45Z"],["dc.date.issued","2019"],["dc.description.abstract","The cytoskeleton is a composite network of three types of protein filaments, among which in-termediate filaments (IFs) are the most extensible ones. Two very important IFs are keratin and vimentin, which have similar molecular architectures, but different mechanical behaviors. Here we compare the mechanical response of single keratin and vimentin filaments using optical tweezers. We show that the mechanics of vimentin strongly depends on the ionic strength of the buffer and that its force-strain curve suggests a high degree of cooperativity between subunits. Indeed, a computational model indicates that in contrast to keratin, vimentin is characterized by strong lateral subunit coupling of its charged monomers during unfolding of α-helices. We conclude that cells can tune their mechanics by differential use of keratin versus vimentin."],["dc.identifier.doi","10.1101/676197"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/16475"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63071"],["dc.language.iso","en"],["dc.title","Lateral Subunit Coupling Determines Intermediate Filament Mechanics"],["dc.type","preprint"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Book Chapter [["dc.bibliographiccitation.firstpage","701"],["dc.bibliographiccitation.lastpage","723"],["dc.bibliographiccitation.seriesnr","2478"],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Schepers, Anna V."],["dc.contributor.author","Köster, Sarah"],["dc.contributor.editor","Gennerich, Arne"],["dc.date.accessioned","2022-10-04T10:21:26Z"],["dc.date.available","2022-10-04T10:21:26Z"],["dc.date.issued","2022"],["dc.identifier.doi","10.1007/978-1-0716-2229-2_25"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/114408"],["dc.notes.intern","DOI-Import GROB-600"],["dc.publisher","Springer US"],["dc.publisher.place","New York, NY"],["dc.relation.crisseries","Methods in Molecular Biology"],["dc.relation.eisbn","978-1-0716-2229-2"],["dc.relation.isbn","978-1-0716-2228-5"],["dc.relation.ispartof","Optical Tweezers : Methods and Protocols"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.title","Quantifying the Interaction Strength Between Biopolymers"],["dc.type","book_chapter"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article Research Paper [["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Perego, Eleonora"],["dc.contributor.author","Reshetniak, Sofiia"],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Hoffmann, Christian"],["dc.contributor.author","Milovanović, Dragomir"],["dc.contributor.author","Rizzoli, Silvio O."],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2021-04-14T08:26:53Z"],["dc.date.available","2021-04-14T08:26:53Z"],["dc.date.issued","2020"],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41598-020-77887-1"],["dc.identifier.pmid","33273508"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17819"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/82109"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/98"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/65"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | B02: Ein in vitro-Verfahren zum Verständnis der struktur-organisierenden Rolle des Vesikel-Clusters"],["dc.relation.eissn","2045-2322"],["dc.relation.orgunit","Fakultät für Physik"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.relation.workinggroup","RG Rizzoli (Quantitative Synaptology in Space and Time)"],["dc.rights","CC BY 4.0"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.subject.gro","neuro biophysics"],["dc.subject.gro","molecular biophysics"],["dc.title","A minimalist model to measure interactions between proteins and synaptic vesicles"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021Journal Article Research Paper [["dc.bibliographiccitation.firstpage","380"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Nanoscale"],["dc.bibliographiccitation.lastpage","387"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Kraxner, Julia"],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Menzel, Julia"],["dc.contributor.author","Parfentev, Iwan"],["dc.contributor.author","Silbern, Ivan"],["dc.contributor.author","Denz, Manuela"],["dc.contributor.author","Urlaub, Henning"],["dc.contributor.author","Schwappach, Blanche"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2021-09-01T06:42:51Z"],["dc.date.available","2021-09-01T06:42:51Z"],["dc.date.issued","2021"],["dc.description.abstract","The mechanical properties of biological cells are determined by the cytoskeleton, a composite biopolymer network consisting of microtubules, actin filaments and intermediate filaments (IFs). By differential expression of cytoskeletal proteins, modulation of the network architecture and interactions between the filaments, cell mechanics may be adapted to varying requirements on the cell. Here, we focus on the intermediate filament protein vimentin and introduce post-translational modifications as an additional, much faster mechanism for mechanical modulation. We study the impact of phosphorylation on filament mechanics by recording force-strain curves using optical traps. Partial phosphorylation softens the filaments. We show that binding of the protein 14-3-3 to phosphorylated vimentin IFs further enhances this effect and speculate that in the cell 14-3-3 may serve to preserve the softening and thereby the altered cell mechanics. We explain our observation by the additional charges introduced during phosphorylation."],["dc.identifier.doi","10.1039/D0NR07322A"],["dc.identifier.pmid","33351020"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89158"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/132"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/91"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | A08: Die Rolle post-translational modifizierter Proteine in der synaptischen Übertragung"],["dc.relation.eissn","2040-3372"],["dc.relation.issn","2040-3364"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.rights","CC BY 3.0"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.title","Post-translational modifications soften vimentin intermediate filaments"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2021-07-06Journal Article Research Paper [["dc.bibliographiccitation.firstpage","e2102026118"],["dc.bibliographiccitation.issue","27"],["dc.bibliographiccitation.journal","Proceedings of the National Academy of Sciences of the United States of America"],["dc.bibliographiccitation.volume","118"],["dc.contributor.author","Schepers, Anna V."],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Nietmann, Peter"],["dc.contributor.author","Janshoff, Andreas"],["dc.contributor.author","Klumpp, Stefan"],["dc.contributor.author","Köster, Sarah"],["dc.date.accessioned","2021-07-01T12:23:07Z"],["dc.date.available","2021-07-01T12:23:07Z"],["dc.date.issued","2021-07-06"],["dc.description.abstract","The cytoskeleton, an intricate network of protein filaments, motor proteins, and cross-linkers, largely determines the mechanical properties of cells. Among the three filamentous components, F-actin, microtubules, and intermediate filaments (IFs), the IF network is by far the most extensible and resilient to stress. We present a multiscale approach to disentangle the three main contributions to vimentin IF network mechanics—single-filament mechanics, filament length, and interactions between filaments—including their temporal evolution. Combining particle tracking, quadruple optical trapping, and computational modeling, we derive quantitative information on the strength and kinetics of filament interactions. Specifically, we find that hydrophobic contributions to network mechanics enter mostly via filament-elongation kinetics, whereas electrostatics have a direct influence on filament–filament interactions."],["dc.identifier.doi","10.1073/pnas.2102026118"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87447"],["dc.language.iso","en"],["dc.relation.issn","0027-8424"],["dc.relation.issn","1091-6490"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.title","Multiscale mechanics and temporal evolution of vimentin intermediate filament networks"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.artnumber","glia.24290"],["dc.bibliographiccitation.journal","Glia"],["dc.contributor.author","Steyer, Anna M."],["dc.contributor.author","Buscham, Tobias J."],["dc.contributor.author","Lorenz, Charlotta"],["dc.contributor.author","Hümmert, Sophie"],["dc.contributor.author","Eichel‐Vogel, Maria A."],["dc.contributor.author","Schadt, Leonie C."],["dc.contributor.author","Edgar, Julia M."],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Nave, Klaus‐Armin"],["dc.contributor.author","Werner, Hauke B."],["dc.date.accessioned","2022-12-01T08:31:03Z"],["dc.date.available","2022-12-01T08:31:03Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659"],["dc.identifier.doi","10.1002/glia.24290"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/118053"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-621"],["dc.relation.eissn","1098-1136"],["dc.relation.issn","0894-1491"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.subject.gro","molecular biophysics"],["dc.title","Focused ion beam‐scanning electron microscopy links pathological myelin outfoldings to axonal changes in mice lacking Plp1 or Mag"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI