Options
Köster, Sarah
Loading...
Preferred name
Köster, Sarah
Official Name
Köster, Sarah
Alternative Name
Koester, Sarah
Koester, S.
Köster, S. F.
Köster, S.
Main Affiliation
Institut für Röntgenphysik
Email
sarah.koester@uni-goettingen.de
ORCID
Scopus Author ID
56186599600
Researcher ID
M-1983-2014
Now showing 1 - 10 of 11
2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","82"],["dc.bibliographiccitation.journal","Current Opinion in Cell Biology"],["dc.bibliographiccitation.lastpage","91"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Weitz, David A."],["dc.contributor.author","Goldman, Robert D."],["dc.contributor.author","Aebi, Ueli"],["dc.contributor.author","Herrmann, Harald"],["dc.date.accessioned","2017-09-07T11:44:38Z"],["dc.date.available","2017-09-07T11:44:38Z"],["dc.date.issued","2015"],["dc.description.abstract","Intermediate filament proteins form filaments, fibers and networks both in the cytoplasm and the nucleus of metazoan cells. Their general structural building plan accommodates highly varying amino acid sequences to yield extended dimeric alpha-helical coiled coils of highly conserved design. These 'rod' particles are the basic building blocks of intrinsically flexible, filamentous structures that are able to resist high mechanical stresses, that is, bending and stretching to a considerable degree, both in vitro and in the cell. Biophysical and computer modeling studies are beginning to unfold detailed structural and mechanical insights into these major supramolecular assemblies of cell architecture, not only in the 'test tube' but also in the cellular and tissue context."],["dc.identifier.doi","10.1016/j.ceb.2015.01.001"],["dc.identifier.gro","3141962"],["dc.identifier.isi","000351309500012"],["dc.identifier.pmid","25621895"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3013"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1879-0410"],["dc.relation.issn","0955-0674"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.title","Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2009Journal Article Research Paper [["dc.bibliographiccitation.firstpage","44"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Lab on a Chip"],["dc.bibliographiccitation.lastpage","49"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Schmitz, Christian H. J."],["dc.contributor.author","Rowat, Amy C."],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Weitz, David A."],["dc.date.accessioned","2017-09-07T11:47:35Z"],["dc.date.available","2017-09-07T11:47:35Z"],["dc.date.issued","2009"],["dc.description.abstract","We present a simple microfluidic device that uses an array of well-defined chambers to immobilize thousands of femtoliter-to picoliter-scale aqueous drops suspended in inert carrier oil. This device enables timelapse studies of large numbers of individual drops, while simultaneously enabling subsequent drop recovery."],["dc.identifier.doi","10.1039/b809670h"],["dc.identifier.gro","3143172"],["dc.identifier.isi","000262649400007"],["dc.identifier.pmid","19209334"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/656"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1473-0197"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Dropspots"],["dc.title.subtitle","A picoliter array in a microfluidic device"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Journal Article [["dc.bibliographiccitation.artnumber","pdb.prot5599"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Cold Spring Harbor Protocols"],["dc.bibliographiccitation.volume","2011"],["dc.contributor.author","Kasza, K. E."],["dc.contributor.author","Vader, D."],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Wang, N."],["dc.contributor.author","Weitz, David A."],["dc.date.accessioned","2020-03-10T12:00:58Z"],["dc.date.available","2020-03-10T12:00:58Z"],["dc.date.issued","2011"],["dc.description.abstract","This protocol provides the general steps for magnetic twisting cytometry (MTC). MTC is an active microrheology method well-suited to measuring the mechanical properties of the individual adherent cells. Specialized equipment is required for producing the magnetic fields used in this technique. Specific cells, reagents, and experimental times and temperatures will depend on the objectives of the investigator."],["dc.identifier.doi","10.1101/pdb.prot5599"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63283"],["dc.language.iso","en"],["dc.relation.issn","1559-6095"],["dc.title","Magnetic Twisting Cytometry"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dspace.entity.type","Publication"]]Details DOI2009Conference Paper [["dc.bibliographiccitation.journal","Arteriosclerosis, Thrombosis, and Vascular Biology"],["dc.bibliographiccitation.volume","29"],["dc.contributor.author","Schwertz, Hansjörg"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Foulks, Jasin M."],["dc.contributor.author","Michetti, Naomi"],["dc.contributor.author","Weitz, David A."],["dc.contributor.author","Blaylock, Robert C."],["dc.contributor.author","Kraiss, Larry W."],["dc.contributor.author","Zimmerman, Guy A."],["dc.contributor.author","Weyrich, Andrew S."],["dc.date.accessioned","2020-04-24T12:22:14Z"],["dc.date.available","2020-04-24T12:22:14Z"],["dc.date.issued","2009"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/64343"],["dc.language.iso","en"],["dc.relation.conference","10th Annual Conference on Arteriosclerosis"],["dc.relation.eventlocation","Washington , DC, DC"],["dc.relation.eventstart","2009-04-29"],["dc.title","Anucleate Platelets Generate Progeny in a Regulated Fashion"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details2008Journal Article Research Paper [["dc.bibliographiccitation.artnumber","875"],["dc.bibliographiccitation.firstpage","427"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Chemistry & Biology"],["dc.bibliographiccitation.lastpage","437"],["dc.bibliographiccitation.volume","15"],["dc.contributor.author","Clausell-Tormos, Jenifer"],["dc.contributor.author","Lieber, Diana"],["dc.contributor.author","Baret, Jean-Christophe"],["dc.contributor.author","El-Harrak, Abdeslam"],["dc.contributor.author","Miller, Oliver J."],["dc.contributor.author","Frenz, Lucas"],["dc.contributor.author","Blouwolff, Joshua"],["dc.contributor.author","Humphry, Katherine J."],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Duan, Honey"],["dc.contributor.author","Holtze, Christian"],["dc.contributor.author","Weitz, David A."],["dc.contributor.author","Griffiths, Andrew D."],["dc.contributor.author","Merten, Christoph A."],["dc.date.accessioned","2020-03-10T14:59:12Z"],["dc.date.available","2020-03-10T14:59:12Z"],["dc.date.issued","2008"],["dc.description.abstract","High-throughput, cell-based assays require small sample volumes to reduce assay costs and to allow for rapid sample manipulation. However, further miniaturization of conventional microtiter plate technology is problematic due to evaporation and capillary action. To overcome these limitations, we describe droplet-based microfluidic platforms in which cells are grown in aqueous microcompartments separated by an inert perfluorocarbon carrier oil. Synthesis of biocompatible surfactants and identification of gas-permeable storage systems allowed human cells, and even a Multicellular organism (C. elegans), to survive and proliferate within the microcompartments for several days. Microcompartments containing single cells could be reinjected into a microfluidic device after incubation to measure expression of a reporter gene. This should open the way for high-throughput, cell-based screening that can use >1000-fold smaller assay volumes and has similar to 500x higher throughput than conventional microtiter plate assays."],["dc.identifier.doi","10.1016/j.chembiol.2008.08.004"],["dc.identifier.gro","3143303"],["dc.identifier.isi","000256183200007"],["dc.identifier.pmid","18482695"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/63284"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10 / Funder: Medical Research Council"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1074-5521"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Droplet-Based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1910"],["dc.bibliographiccitation.issue","9"],["dc.bibliographiccitation.journal","Soft Matter"],["dc.bibliographiccitation.lastpage","1914"],["dc.bibliographiccitation.volume","6"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Lin, Yi-Chia"],["dc.contributor.author","Herrmann, Harald"],["dc.contributor.author","Weitz, David A."],["dc.date.accessioned","2017-09-07T11:46:43Z"],["dc.date.available","2017-09-07T11:46:43Z"],["dc.date.issued","2010"],["dc.description.abstract","Intermediate filaments are one of three classes of fibrous proteins in the cytoskeleton of eukaryotes, the others being actin filaments and microtubules. The dense filamentous networks and bundles provide important mechanical stability for the cell. Here we directly measure both the structure and mechanical properties of an in vitro model system for intermediate filaments reconstituted from purified vimentin protein at 1 mg mL(-1). We show that the mesh size is on the order of 1 mm, a value that is preserved upon addition of divalent ions. These ions act as effective cross-linkers, further stiffening the network."],["dc.identifier.doi","10.1039/c000113a"],["dc.identifier.gro","3143005"],["dc.identifier.isi","000277031300011"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/472"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1744-683X"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cytoskeleton"],["dc.subject.gro","cellular biophysics"],["dc.title","Nanomechanics of vimentin intermediate filament networks"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI WOS2008Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1632"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Lab on a Chip"],["dc.bibliographiccitation.lastpage","1639"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Holtze, Christian"],["dc.contributor.author","Rowat, Amy C."],["dc.contributor.author","Agresti, Jeremy J."],["dc.contributor.author","Hutchison, J. B."],["dc.contributor.author","Angile, Francesco E."],["dc.contributor.author","Schmitz, Christian H. J."],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Duan, Honey"],["dc.contributor.author","Humphry, Katherine J."],["dc.contributor.author","Scanga, R. A."],["dc.contributor.author","Johnson, J. S."],["dc.contributor.author","Pisignano, Dario"],["dc.contributor.author","Weitz, David A."],["dc.date.accessioned","2017-09-07T11:48:11Z"],["dc.date.available","2017-09-07T11:48:11Z"],["dc.date.issued","2008"],["dc.description.abstract","Drops of water-in-fluorocarbon emulsions have great potential for compartmentalizing both in vitro and in vivo biological systems; however, surfactants to stabilize such emulsions are scarce. Here we present a novel class of fluorosurfactants that we synthesize by coupling oligomeric perfluorinated polyethers (PFPE) with polyethyleneglycol (PEG). We demonstrate that these block copolymer surfactants stabilize water-in-fluorocarbon oil emulsions during all necessary steps of a drop-based experiment including drop formation, incubation, and reinjection into a second microfluidic device. Furthermore, we show that aqueous drops stabilized with these surfactants can be used for in vitro translation (IVT), as well as encapsulation and incubation of single cells. The compatability of this emulsion system with both biological systems and polydimethylsiloxane (PDMS) microfluidic devices makes these surfactants ideal for a broad range of high-throughput, drop-based applications."],["dc.identifier.doi","10.1039/b806706f"],["dc.identifier.gro","3143230"],["dc.identifier.isi","000260466300005"],["dc.identifier.pmid","18813384"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/721"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1473-0189"],["dc.relation.issn","1473-0197"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Biocompatible surfactants for water-in-fluorocarbon emulsions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2009Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1525"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.lastpage","1529"],["dc.bibliographiccitation.volume","97"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Evilevitch, Alex"],["dc.contributor.author","Jeembaeva, Meerim"],["dc.contributor.author","Weitz, David A."],["dc.date.accessioned","2017-09-07T11:46:49Z"],["dc.date.available","2017-09-07T11:46:49Z"],["dc.date.issued","2009"],["dc.description.abstract","Ejection of the genome from the virus, phage, is the initial step in the infection of its host bacterium. In vitro, the ejection depends sensitively on internal pressure within the virus capsid; however, the in vivo effect of internal pressure on infection of bacteria is unknown. Here, we use microfluidics to monitor individual cells and determine the temporal distribution of lysis due to infection as the capsid pressure is varied. The lysis probability decreases markedly with decreased capsid pressure. Of interest, the average lysis times remain the same but the distribution is broadened as the pressure is lowered."],["dc.identifier.doi","10.1016/j.bpj.2009.07.007"],["dc.identifier.gro","3143054"],["dc.identifier.isi","000270380800002"],["dc.identifier.pmid","19751656"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/526"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0006-3495"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Influence of Internal Capsid Pressure on Viral Infection by Phage λ"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2008Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1110"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Lab on a Chip"],["dc.bibliographiccitation.lastpage","1115"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Angile, Francesco E."],["dc.contributor.author","Duan, Honey"],["dc.contributor.author","Agresti, Jeremy J."],["dc.contributor.author","Wintner, Anton"],["dc.contributor.author","Schmitz, Christian H. J."],["dc.contributor.author","Rowat, Amy C."],["dc.contributor.author","Merten, Christoph A."],["dc.contributor.author","Pisignano, Dario"],["dc.contributor.author","Griffiths, Andrew D."],["dc.contributor.author","Weitz, David A."],["dc.date.accessioned","2017-09-07T11:48:49Z"],["dc.date.available","2017-09-07T11:48:49Z"],["dc.date.issued","2008"],["dc.description.abstract","We use microfluidic devices to encapsulate, incubate, and manipulate individual cells in picoliter aqueous drops in a carrier fluid at rates of up to several hundred Hz. We use a modular approach with individual devices for each function, thereby significantly increasing the robustness of our system and making it highly flexible and adaptable to a variety of cell-based assays. The small volumes of the drops enables the concentrations of secreted molecules to rapidly attain detectable levels. We show that single hybridoma cells in 33 pL drops secrete detectable concentrations of antibodies in only 6 h and remain fully viable. These devices hold the promise of developing microfluidic cell cytometers and cell sorters with much greater functionality, allowing assays to be performed on individual cells in their own microenvironment prior to analysis and sorting."],["dc.identifier.doi","10.1039/b802941e"],["dc.identifier.gro","3143383"],["dc.identifier.isi","000257236900017"],["dc.identifier.pmid","18584086"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/891"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1473-0197"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Drop-based microfluidic devices for encapsulation of single cells"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2010Journal Article Research Paper [["dc.bibliographiccitation.firstpage","3801"],["dc.bibliographiccitation.issue","18"],["dc.bibliographiccitation.journal","Blood"],["dc.bibliographiccitation.lastpage","3809"],["dc.bibliographiccitation.volume","115"],["dc.contributor.author","Schwertz, Hansjoerg"],["dc.contributor.author","Köster, Sarah"],["dc.contributor.author","Kahr, Walter H. A."],["dc.contributor.author","Michetti, Noemi"],["dc.contributor.author","Kraemer, Bjoern F."],["dc.contributor.author","Weitz, David A."],["dc.contributor.author","Blaylock, Robert C."],["dc.contributor.author","Kraiss, Larry W."],["dc.contributor.author","Greinacher, Andreas"],["dc.contributor.author","Zimmerman, Guy A."],["dc.contributor.author","Weyrich, Andrew S."],["dc.date.accessioned","2017-09-07T11:46:04Z"],["dc.date.available","2017-09-07T11:46:04Z"],["dc.date.issued","2010"],["dc.description.abstract","Platelets are classified as terminally differentiated cells that are incapable of cellular division. However, we observe that anucleate human platelets, either maintained in suspension culture or captured in microdrops, give rise to new cell bodies packed with respiring mitochondria and α-granules. Platelet progeny formation also occurs in whole blood cultures. Newly formed platelets are structurally indistinguishable from normal platelets, are able to adhere and spread on extracellular matrix, and display normal signal-dependent expression of surface P-selectin and annexin V. Platelet progeny formation is accompanied by increases in biomass, cellular protein levels, and protein synthesis in expanding populations. Platelet numbers also increase during ex vivo storage. These observations indicate that platelets have a previously unrecognized capacity for producing functional progeny, which involves a form of cell division that does not require a nucleus. Because this new function of platelets occurs outside of the bone marrow milieu, it raises the possibility that thrombopoiesis continues in the bloodstream."],["dc.identifier.doi","10.1182/blood-2009-08-239558"],["dc.identifier.gro","3142929"],["dc.identifier.isi","000277335900024"],["dc.identifier.pmid","20086251"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/387"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0006-4971"],["dc.relation.orgunit","Institut für Röntgenphysik"],["dc.relation.workinggroup","RG Köster (Cellular Biophysics)"],["dc.subject.gro","cellular biophysics"],["dc.subject.gro","microfluidics"],["dc.title","Anucleate platelets generate progeny"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS