Now showing 1 - 10 of 39
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","433"],["dc.bibliographiccitation.journal","SpringerPlus"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.date.accessioned","2018-11-07T09:36:37Z"],["dc.date.available","2018-11-07T09:36:37Z"],["dc.date.issued","2014"],["dc.description.abstract","Introduction: A 66-years old man suffering from coronary artery disease appeared without symptoms for routine follow-up in our clinic. Case description: The echocardiogram revealed a tumorous mass of the right atrium and right ventricle. In the past, coronary revascularization with venous grafts of the right coronary artery and circumflex artery as well as internal mammaria graft to the left anterior descending artery was performed 20 years before. The general clinicians presented the case to the surgeons and it was decided to perform cardiac MRI as a preoperative diagnostic modality. Discussion and evaluation: Following cardiac magnetic resonance imaging (MRI) showed a mass in the pericardium in the right atrioventricular groove with thrombotic material. Due to the MRI the patient underwent coronary angiography to confirm an aneurysm. Conclusions: The learning points from this case are that cardiac MRI is a very useful tool for further evaluation of suspected cardiac masses and should be performed for further characterization."],["dc.identifier.doi","10.1186/2193-1801-3-433"],["dc.identifier.isi","000359078400004"],["dc.identifier.pmid","25184106"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10853"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/32660"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","2193-1801"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Giant bypass aneurysm, a cause of suspected cardiac mass"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","218"],["dc.bibliographiccitation.journal","SpringerPlus"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Goth, Sabrina"],["dc.contributor.author","Sohns, Christian"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Buchwald, Christina Unterberg"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Lotz, Joachim"],["dc.date.accessioned","2018-11-07T09:41:07Z"],["dc.date.available","2018-11-07T09:41:07Z"],["dc.date.issued","2014"],["dc.description.abstract","Purpose: Aim of the study was to investigate diagnostic accuracy of cardiac computed tomography angiography (CCTA) between left ventricular end-systolic (LVES) and left ventricular end-diastolic (LVED) cardiac phase for thrombus detection in patient's prior to pulmonary vein isolation (PVI). Materials and methods: 182 consecutive Patients with drug refractory AF scheduled for PVI (62.6% male, mean age 64.1 +/- 10.2 years) underwent routine pre-procedural evaluation including transesophageal echocardiography (TEE) and CCTA for evaluation of left atrial (LA)/left atrial appendage (LAA) anatomy and thrombus formation. Qualitative and quantitative analysis (using aorta ascendens (AA)/LAA ratio) was performed. Measurements of the LA/LAA in LVES and LVED cardiac phase were obtained. Results: End-systolic volumes (LA/LAA) measured in 30 patients without filling defects as control group and all 14 with filling defects of 182 patients were significantly larger (p < 0.01) than in end-diastolic phase. Qualitative analysis was inferior to quantitative analysis using LA/LAA ratio (<0.5; accuracy: 100%, 88%, 100%, 99% vs 100%). 5 out of 182 patients (2.7%) showed thrombus formation of the LAA in CCTA confirmed by TEE and quantitative analysis. Intra/-interobserver variability was lower in end-systolic vs end-diastolic reconstruction interval. Conclusion: For evaluating CCTA datasets in patients prior PVI, the LVES reconstruction interval is recommended due to significantly larger LA/LAA volumes and lower intra/-interobserver variability's."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2014"],["dc.identifier.doi","10.1186/2193-1801-3-218"],["dc.identifier.isi","000359026000005"],["dc.identifier.pmid","25279273"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11751"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33654"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","2193-1801"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Comparison of end-diastolic versus end-systolic cardiac-computed tomography reconstruction interval in patient's prior to pulmonary vein isolation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","3010"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","Cancers"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Uhlig, Johannes"],["dc.contributor.author","Leha, Andreas"],["dc.contributor.author","Delonge, Laura M."],["dc.contributor.author","Haack, Anna-Maria"],["dc.contributor.author","Shuch, Brian"],["dc.contributor.author","Kim, Hyun S."],["dc.contributor.author","Bremmer, Felix"],["dc.contributor.author","Trojan, Lutz"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Uhlig, Annemarie"],["dc.date.accessioned","2021-04-14T08:31:08Z"],["dc.date.available","2021-04-14T08:31:08Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.3390/cancers12103010"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17620"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83497"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","MDPI"],["dc.relation.eissn","2072-6694"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Radiomic Features and Machine Learning for the Discrimination of Renal Tumor Histological Subtypes: A Pragmatic Study Using Clinical-Routine Computed Tomography"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","e109164"],["dc.bibliographiccitation.issue","10"],["dc.bibliographiccitation.journal","PLoS ONE"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Lamata, Pablo"],["dc.contributor.author","Hussain, Shazia T."],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.contributor.author","Schuster, Andreas"],["dc.date.accessioned","2017-09-07T11:45:27Z"],["dc.date.available","2017-09-07T11:45:27Z"],["dc.date.issued","2014"],["dc.description.abstract","Objectives: Cardiovascular magnetic resonance feature tracking (CMR-FT) offers quantification of myocardial deformation from routine cine images. However, data using CMR-FT to quantify left ventricular (LV) torsion and diastolic recoil are not yet available. We therefore sought to evaluate the feasibility and reproducibility of CMR-FT to quantify LV torsion and peak recoil rate using an optimal anatomical approach. Methods: Short-axis cine stacks were acquired at rest and during dobutamine stimulation (10 and 20 mu g.kg(-1).min(-1)) in 10 healthy volunteers. Rotational displacement was analysed for all slices. A complete 3D-LV rotational model was developed using linear interpolation between adjacent slices. Torsion was defined as the difference between apical and basal rotation, divided by slice distance. Depending on the distance between the most apical (defined as 0% LV distance) and basal (defined as 100% LV distance) slices, four different models for the calculation of torsion were examined: Model-1 (25-75%), Model-2 (0-100%), Model-3 (25-100%) and Model-4 (0-75%). Analysis included subendocardial, subepicardial and global torsion and recoil rate (mean of subendocardial and subepicardial values). Results: Quantification of torsion and recoil rate was feasible in all subjects. There was no significant difference between the different models at rest. However, only Model-1 (25-75%) discriminated between rest and stress (Global Torsion: 2.7 +/- 1.5 degrees cm(-1), 3.6 +/- 2.0 degrees cm(-1), 5.1 +/- 2.2 degrees cm(-1), p<0.01; Global Recoil Rate: -30.1 +/- 11.1 degrees cm(-1) s (-1), -469 +/- 15.0 degrees cm (-1) s (-1), -68.9 +/- 32.3 degrees cm(-1) s(-1), p<0.01; for rest, 10 and 20 mu g.kg(-1).min(-1) of dobutamine, respectively). Reproducibility was sufficient for all parameters as determined by Bland-Altman analysis, intraclass correlation coefficients and coefficient of variation. Conclusions: CMR-FT based derivation of myocardial torsion and recoil rate is feasible and reproducible at rest and with dobutamine stress. Using an optimal anatomical approach measuring rotation at 25% and 75% apical and basal LV locations allows effective quantification of torsion and recoil dynamics. Application of these new measures of deformation by CMR-FT should next be explored in disease states."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2014"],["dc.identifier.doi","10.1371/journal.pone.0109164"],["dc.identifier.gro","3142035"],["dc.identifier.isi","000345743700050"],["dc.identifier.pmid","25285656"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/10994"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/3823"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Public Library Science"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Quantification of Left Ventricular Torsion and Diastolic Recoil Using Cardiovascular Magnetic Resonance Myocardial Feature Tracking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","e0202146"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","PLoS One"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Stiermaier, Thomas"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Chiribiri, Amedeo"],["dc.contributor.author","Möller, Christian"],["dc.contributor.author","Graf, Tobias"],["dc.contributor.author","Raaz, Uwe"],["dc.contributor.author","Villa, Adriana"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hasenfuß, Gerd"],["dc.contributor.author","Thiele, Holger"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Eitel, Ingo"],["dc.contributor.editor","Novo, Giuseppina"],["dc.date.accessioned","2020-12-10T18:42:08Z"],["dc.date.available","2020-12-10T18:42:08Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1371/journal.pone.0202146"],["dc.identifier.eissn","1932-6203"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15691"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77819"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Right ventricular strain assessment by cardiovascular magnetic resonance myocardial feature tracking allows optimized risk stratification in Takotsubo syndrome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2014Journal Article
    [["dc.bibliographiccitation.artnumber","601"],["dc.bibliographiccitation.journal","SpringerPlus"],["dc.bibliographiccitation.volume","3"],["dc.contributor.author","Sohns, Jan Martin"],["dc.contributor.author","Steinmetz, Michael"],["dc.contributor.author","Schneider, Heike"],["dc.contributor.author","Fasshauer, Martin"],["dc.contributor.author","Staab, Wieland"],["dc.contributor.author","Kowallick, Johannes Tammo"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Ritter, Christian"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Unterberg-Buchwald, Christina"],["dc.date.accessioned","2018-11-07T09:33:32Z"],["dc.date.available","2018-11-07T09:33:32Z"],["dc.date.issued","2014"],["dc.description.abstract","Introduction: Situs inversus totalis with congenitally corrected transposition of the great arteries represents a relatively rare congenital condition. Case description: The current report describes the case of a 56 year old patient with an atrio-ventricular and ventricular-arterial discordance of the heart chambers without surgical correction, incidentally detected during hepatocellular carcinoma evaluation. The systemic venous blood arrived via the right atrium and a mitral valve in the morphologically left but pulmonary arterial ventricle that gave rise to a pulmonary trunk. The pulmonary venous blood passed the left atrium and the tricuspid valve into a morphologically right but systemic ventricle that gave rise to the aorta. Discussion and evaluation: The switched anatomy was incidentally detected on echocardiography. The patient was referred to cardiac magnetic resonance imaging (CMR) including flow measurements, volumetry and late enhancement. CMR results showed a mildly impaired function and the switched anatomy. During a follow-up period of 2 years the patient was suffering from only mild heart failure and dyspnea. Conclusions: Heart failure symptoms and arrhythmias can appear with increasing age in patients with congenitally corrected transposition. Early CMR allows accurate diagnosis and timely introduction of adequate therapy thereby avoiding disease progression."],["dc.identifier.doi","10.1186/2193-1801-3-601"],["dc.identifier.isi","000359108200001"],["dc.identifier.pmid","25392774"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/11150"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/31986"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","2193-1801"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.title","Situs inversus totalis with congenitally corrected transposition of the great arteries: insights from cardiac MRI"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2021-05-17Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","60"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Cardiovascular Magnetic Resonance"],["dc.bibliographiccitation.volume","23"],["dc.contributor.author","Metschies, Georg"],["dc.contributor.author","Billing, Marcus"],["dc.contributor.author","Schmidt-Rimpler, Jonas"],["dc.contributor.author","Kowallick, Johannes T."],["dc.contributor.author","Gertz, Roman J."],["dc.contributor.author","Lapinskas, Tomas"],["dc.contributor.author","Pieske-Kraigher, Elisabeth"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Bigalke, Boris"],["dc.contributor.author","Kutty, Shelby"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.contributor.author","Kelle, Sebastian"],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Backhaus, Sören J."],["dc.date.accessioned","2021-11-25T11:12:48Z"],["dc.date.available","2021-11-25T11:12:48Z"],["dc.date.issued","2021-05-17"],["dc.date.updated","2021-11-19T12:47:36Z"],["dc.description.abstract","Abstract Background Myocardial deformation analyses using cardiovascular magnetic resonance (CMR) feature tracking (CMR-FT) have incremental value in the assessment of cardiac function beyond volumetric analyses. Since guidelines do not recommend specific imaging parameters, we aimed to define optimal spatial and temporal resolutions for CMR cine images to enable reliable post-processing. Methods Intra- and inter-observer reproducibility was assessed in 12 healthy subjects and 9 heart failure (HF) patients. Cine images were acquired with different temporal (20, 30, 40 and 50 frames/cardiac cycle) and spatial resolutions (high in-plane 1.5 × 1.5 mm through-plane 5 mm, standard 1.8 × 1.8 x 8mm and low 3.0 × 3.0 x 10mm). CMR-FT comprised left ventricular (LV) global and segmental longitudinal/circumferential strain (GLS/GCS) and associated systolic strain rates (SR), and right ventricular (RV) GLS. Results Temporal but not spatial resolution did impact absolute strain and SR. Maximum absolute changes between lowest and highest temporal resolution were as follows: 1.8% and 0.3%/s for LV GLS and SR, 2.5% and 0.6%/s for GCS and SR as well as 1.4% for RV GLS. Changes of strain values occurred comparing 20 and 30 frames/cardiac cycle including LV and RV GLS and GCS (p < 0.001–0.046). In contrast, SR values (LV GLS/GCS SR) changed significantly comparing all successive temporal resolutions (p < 0.001–0.013). LV strain and SR reproducibility was not affected by either temporal or spatial resolution, whilst RV strain variability decreased with augmentation of temporal resolution. Conclusion Temporal but not spatial resolution significantly affects strain and SR in CMR-FT deformation analyses. Strain analyses require lower temporal resolution and 30 frames/cardiac cycle offer consistent strain assessments, whilst SR measurements gain from further increases in temporal resolution."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.citation","Journal of Cardiovascular Magnetic Resonance. 2021 May 17;23(1):60"],["dc.identifier.doi","10.1186/s12968-021-00740-5"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/93537"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.publisher","BioMed Central"],["dc.relation.eissn","1532-429X"],["dc.relation.orgunit","Klinik fĂĽr Kardiologie und Pneumologie"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.subject","Myocardial deformation"],["dc.subject","Strain"],["dc.subject","Cardiovascular magnetic resonance"],["dc.subject","Temporal resolution"],["dc.subject","Spatial resolution"],["dc.subject","Reproducibility"],["dc.title","Defining the optimal temporal and spatial resolution for cardiovascular magnetic resonance imaging feature tracking"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2018Journal Article
    [["dc.bibliographiccitation.firstpage","122"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Open Public Health Journal"],["dc.bibliographiccitation.lastpage","133"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Uhlig, Annemarie"],["dc.contributor.author","Uhlig, Johannes"],["dc.contributor.author","Strauss, Arne"],["dc.contributor.author","Trojan, Lutz"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Hosseini, Ali Seif Amir"],["dc.date.accessioned","2019-07-09T11:45:23Z"],["dc.date.available","2019-07-09T11:45:23Z"],["dc.date.issued","2018"],["dc.description.abstract","Purpose: To summarize the current evidence on preventive services utilization in cancer survivors. Methods: A systematic literature review and meta-analysis was conducted in February 2016. Studies were included if they compared the utilization of influenza vaccination, cholesterol/lipid testing, bone densitometry, or blood pressure measurement among survivors of adulthood cancer to cancer-free controls. Random effects meta-analyses were conducted to pool estimates. Results: Literature search identified 3740 studies of which 10 fulfilled the inclusion criteria. Cancer survivors were significantly more likely to utilize bone densitometry (OR=1.226, 95% CI: 1.114 – 1.350, p<0.001) and influenza vaccination (OR=1.565, 95% CI: 1.176 – 2.082, p=0.002) than cancer-free controls. No statistically significant differences were detected for blood pressure measurement and cholesterol/lipid testing (OR=1.322, 95% CI: 0.812 – 2.151, p=0.261; OR=1.046, 95% CI: 0.96 – 1.139, p=0.304). Conclusions: Cancer survivors were more likely to receive influenza vaccinations and bone densitometry. Future studies should evaluate underlying mechanisms and whether the utilization of preventive services translates into prolonged survival of cancer survivors. Implications for Cancer Survivors: Our meta-analysis demonstrated cancer survivors to be more likely to receive the preventive services such as influenza vaccination and bone densitometry than cancer free controls. Still, these results should be interpreted in the context of suboptimal utilization of preventive services in general, and for cancer survivors in specific. Future research should evaluate the underlying mechanisms and whether utilization of preventive services is associated with overall survival in cancer survivors."],["dc.identifier.doi","10.2174/1874944501811010122"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15190"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59219"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1874-9445"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Preventive Services Utilization Among Cancer Survivors Compared to Cancer-free Controls"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article
    [["dc.bibliographiccitation.artnumber","321623"],["dc.bibliographiccitation.journal","BioMed research international"],["dc.bibliographiccitation.volume","2015"],["dc.contributor.author","van Ooijen, Peter M. A."],["dc.contributor.author","Francone, Marco"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Rasche, Volker"],["dc.date.accessioned","2019-07-09T11:42:34Z"],["dc.date.available","2019-07-09T11:42:34Z"],["dc.date.issued","2015"],["dc.description.abstract","not available"],["dc.identifier.doi","10.1155/2015/321623"],["dc.identifier.fs","619195"],["dc.identifier.pmid","26247016"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/13577"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58697"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","2314-6141"],["dc.rights","CC BY 3.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/3.0"],["dc.subject.mesh","Diagnostic Imaging"],["dc.subject.mesh","Heart Function Tests"],["dc.subject.mesh","Humans"],["dc.subject.mesh","Image Interpretation, Computer-Assisted"],["dc.subject.mesh","Reproducibility of Results"],["dc.subject.mesh","Sensitivity and Specificity"],["dc.subject.mesh","Stroke Volume"],["dc.subject.mesh","Validation Studies as Topic"],["dc.subject.mesh","Ventricular Dysfunction, Left"],["dc.title","Validation of Quantitative Measurements in Cardiovascular Imaging."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","11648"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Scientific Reports"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Backhaus, Sören J."],["dc.contributor.author","Schuster, Andreas"],["dc.contributor.author","Lange, Torben"],["dc.contributor.author","Stehning, Christian"],["dc.contributor.author","Billing, Marcus"],["dc.contributor.author","Lotz, Joachim"],["dc.contributor.author","Pieske, Burkert"],["dc.contributor.author","HasenfuĂź, Gerd"],["dc.contributor.author","Kelle, Sebastian"],["dc.contributor.author","Kowallick, Johannes T."],["dc.date.accessioned","2021-07-05T15:00:34Z"],["dc.date.available","2021-07-05T15:00:34Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Cardiovascular magnetic resonance (CMR) imaging provides reliable assessments of biventricular morphology and function. Since manual post-processing is time-consuming and prone to observer variability, efforts have been directed towards novel artificial intelligence-based fully automated analyses. Hence, we sought to investigate the impact of artificial intelligence-based fully automated assessments on the inter-study variability of biventricular volumes and function. Eighteen participants (11 with normal, 3 with heart failure and preserved and 4 with reduced ejection fraction (EF)) underwent serial CMR imaging at in median 63 days (range 49–87) interval. Short axis cine stacks were acquired for the evaluation of left ventricular (LV) mass, LV and right ventricular (RV) end-diastolic, end-systolic and stroke volumes as well as EF. Assessments were performed manually (QMass, Medis Medical Imaging Systems, Leiden, Netherlands) by an experienced (3 years) and inexperienced reader (no active reporting, 45 min of training with five cases from the SCMR consensus data) as well as fully automated (suiteHEART, Neosoft, Pewaukee, WI, USA) without any manual corrections. Inter-study reproducibility was overall excellent with respect to LV volumetric indices, best for the experienced observer (intraclass correlation coefficient (ICC) > 0.98, coefficient of variation (CoV, < 9.6%) closely followed by automated analyses (ICC > 0.93, CoV < 12.4%) and lowest for the inexperienced observer (ICC > 0.86, CoV < 18.8%). Inter-study reproducibility of RV volumes was excellent for the experienced observer (ICC > 0.88, CoV < 10.7%) but considerably lower for automated and inexperienced manual analyses (ICC > 0.69 and > 0.46, CoV < 22.8% and < 28.7% respectively). In this cohort, fully automated analyses allowed reliable serial investigations of LV volumes with comparable inter-study reproducibility to manual analyses performed by an experienced CMR observer. In contrast, RV automated quantification with current algorithms still relied on manual post-processing for reliability."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.doi","10.1038/s41598-021-90702-9"],["dc.identifier.pii","90702"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/87853"],["dc.language.iso","en"],["dc.notes.intern","DOI Import DOI-Import GROB-441"],["dc.relation.eissn","2045-2322"],["dc.rights","CC BY 4.0"],["dc.title","Impact of fully automated assessment on interstudy reproducibility of biventricular volumes and function in cardiac magnetic resonance imaging"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI