Now showing 1 - 5 of 5
  • 2021Journal Article Research Paper
    [["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Circulation Research"],["dc.bibliographiccitation.volume","128"],["dc.contributor.author","Peper, Jonas"],["dc.contributor.author","Kownatzki-Danger, Daniel"],["dc.contributor.author","Weninger, Gunnar"],["dc.contributor.author","Seibertz, Fitzwilliam"],["dc.contributor.author","Pronto, Julius Ryan D."],["dc.contributor.author","Sutanto, Henry"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Hindmarsh, Robin"],["dc.contributor.author","Brandenburg, Sören"],["dc.contributor.author","Lehnart, Stephan E."],["dc.date.accessioned","2021-06-01T09:42:10Z"],["dc.date.available","2021-06-01T09:42:10Z"],["dc.date.issued","2021"],["dc.description.abstract","Rationale: CAV3 (caveolin3) variants associated with arrhythmogenic cardiomyopathy and muscular dystrophy can disrupt post-Golgi surface trafficking. As CAV1 (caveolin1) was recently identified in cardiomyocytes, we hypothesize that conserved isoform-specific protein/protein interactions orchestrate unique cardiomyocyte microdomain functions. To analyze the CAV1 versus CAV3 interactome, we employed unbiased live-cell proximity proteomic, isoform-specific affinity, and complexome profiling mass spectrometry techniques. We demonstrate the physiological relevance and loss-of-function mechanism of a novel CAV3 interactor in gene-edited human induced pluripotent stem cell cardiomyocytes. Objective: To identify differential CAV1 versus CAV3 protein interactions and to define the molecular basis of cardiac CAV3 loss-of-function. Methods and Results: Combining stable isotope labeling with proximity proteomics, we applied mass spectrometry to screen for putative CAV3 interactors in living cardiomyocytes. Isoform-specific affinity proteomic and co-immunoprecipitation experiments confirmed the monocarboxylate transporter McT1 (monocarboxylate transporter type 1) versus aquaporin1, respectively, as CAV3 or CAV1 specific interactors in cardiomyocytes. Superresolution stimulated emission depletion microscopy showed distinct CAV1 versus CAV3 cluster distributions in cardiomyocyte transverse tubules. CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9 nuclease)-mediated CAV3 knockout uncovered a stabilizing role for McT1 surface expression, proton-coupled lactate shuttling, increased late Na + currents, and early afterdepolarizations in human induced pluripotent stem cell-derived cardiomyocytes. Complexome profiling confirmed that McT1 and the Na,K-ATPase form labile protein assemblies with the multimeric CAV3 complex. Conclusions: Combining the strengths of proximity and affinity proteomics, we identified isoform-specific CAV1 versus CAV3 binding partners in cardiomyocytes. McT1 represents a novel class of metabolically relevant CAV3-specific interactors close to mitochondria in cardiomyocyte transverse tubules. CAV3 knockout uncovered a previously unknown role for functional stabilization of McT1 in the surface membrane of human cardiomyocytes. Strikingly, CAV3 deficient cardiomyocytes exhibit action potential prolongation and instability, reproducing human reentry arrhythmias in silico. Given that lactate is a major substrate for stress adaption both in the healthy and the diseased human heart, future studies of conserved McT1/CAV3 interactions may provide rationales to target this muscle-specific assembly function therapeutically."],["dc.identifier.doi","10.1161/CIRCRESAHA.119.316547"],["dc.identifier.pmid","33486968"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85167"],["dc.identifier.url","https://mbexc.uni-goettingen.de/literature/publications/216"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/383"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/135"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","EXC 2067: Multiscale Bioimaging"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation","SFB 1002 | A09: Lokale molekulare Nanodomänen-Regulation der kardialen Ryanodin-Rezeptor-Funktion"],["dc.relation","SFB 1002 | D01: Erholung aus der Herzinsuffizienz – Einfluss von Fibrose und Transkriptionssignatur"],["dc.relation","SFB 1002 | D02: Neue Mechanismen der genomischen Instabilität bei Herzinsuffizienz"],["dc.relation","SFB 1002 | S01: In vivo und in vitro Krankheitsmodelle"],["dc.relation","SFB 1002 | S02: Hochauflösende Fluoreszenzmikroskopie und integrative Datenanalyse"],["dc.relation","SFB 1002 | A13: Bedeutung einer gestörten zytosolischen Calciumpufferung bei der atrialen Arrhythmogenese bei Patienten mit Herzinsuffizienz (HF)"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation.eissn","1524-4571"],["dc.relation.issn","0009-7330"],["dc.relation.workinggroup","RG Hasenfuß"],["dc.relation.workinggroup","RG Lehnart"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Voigt (Molecular Pharmacology)"],["dc.relation.workinggroup","RG Brandenburg"],["dc.relation.workinggroup","RG Cyganek (Stem Cell Unit)"],["dc.relation.workinggroup","RG Lenz"],["dc.relation.workinggroup","RG Wollnik"],["dc.relation.workinggroup","RG Urlaub (Bioanalytische Massenspektrometrie)"],["dc.title","Caveolin3 Stabilizes McT1-Mediated Lactate/Proton Transport in Cardiomyocytes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","244"],["dc.bibliographiccitation.journal","Redox Biology"],["dc.bibliographiccitation.lastpage","254"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Llobet, Laura"],["dc.contributor.author","Bayona-Bafaluy, M. Pilar"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Torres-Pérez, Elena"],["dc.contributor.author","Arbones-Mainar, José M."],["dc.contributor.author","Navarro, M. Ángeles"],["dc.contributor.author","Gómez-Díaz, Covadonga"],["dc.contributor.author","Montoya, Julio"],["dc.contributor.author","López-Gallardo, Ester"],["dc.contributor.author","Ruiz-Pesini, Eduardo"],["dc.date.accessioned","2021-06-01T10:49:54Z"],["dc.date.available","2021-06-01T10:49:54Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.redox.2017.05.026"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86452"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.issn","2213-2317"],["dc.title","Pharmacologic concentrations of linezolid modify oxidative phosphorylation function and adipocyte secretome"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","823"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Cell Metabolism"],["dc.bibliographiccitation.lastpage","833"],["dc.bibliographiccitation.volume","21"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Bareth, Bettina"],["dc.contributor.author","Dudek, Jan"],["dc.contributor.author","Juris, Lisa"],["dc.contributor.author","Vögtle, F. Nora"],["dc.contributor.author","Wissel, Mirjam"],["dc.contributor.author","Leary, Scot C."],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Deckers, Markus"],["dc.date.accessioned","2017-09-07T11:43:47Z"],["dc.date.available","2017-09-07T11:43:47Z"],["dc.date.issued","2015"],["dc.description.abstract","Three mitochondria-encoded subunits form the catalytic core of cytochrome c oxidase, the terminal enzyme of the respiratory chain. COX1 and COX2 contain heme and copper redox centers, which are integrated during assembly of the enzyme. Defects in this process lead to an enzyme deficiency and manifest as mitochondrial disorders in humans. Here we demonstrate that COA6 is specifically required for COX2 biogenesis. Absence of COA6 leads to fast turnover of newly synthesized COX2 and a concomitant reduction in cytochrome c oxidase levels. COA6 interacts transiently with the copper-containing catalytic domain of newly synthesized COX2. Interestingly, similar to the copper metallochaperone SCO2, loss of COA6 causes cardiomyopathy in humans. We show that COA6 and SCO2 interact and that corresponding pathogenic mutations in each protein affect complex formation. Our analyses define COA6 as a constituent of the mitochondrial copper relay system, linking defects in COX2 metallation to cardiac cytochrome c oxidase deficiency."],["dc.identifier.doi","10.1016/j.cmet.2015.04.012"],["dc.identifier.gro","3141890"],["dc.identifier.isi","000355673700007"],["dc.identifier.pmid","25959673"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2211"],["dc.identifier.url","https://sfb1002.med.uni-goettingen.de/production/literature/publications/131"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation","SFB 1002: Modulatorische Einheiten bei Herzinsuffizienz"],["dc.relation","SFB 1002 | A06: Molekulare Grundlagen mitochondrialer Kardiomyopathien"],["dc.relation.eissn","1932-7420"],["dc.relation.issn","1550-4131"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.title","Cooperation between COA6 and SCO2 in COX2 Maturation during Cytochrome c Oxidase Assembly Links Two Mitochondrial Cardiomyopathies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2012Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1528"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Cell"],["dc.bibliographiccitation.lastpage","1541"],["dc.bibliographiccitation.volume","151"],["dc.contributor.author","Mick, David U."],["dc.contributor.author","Dennerlein, Sven"],["dc.contributor.author","Wiese, Heike"],["dc.contributor.author","Reinhold, Robert"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Lorenzi, Isotta"],["dc.contributor.author","Sasarman, Florin"],["dc.contributor.author","Weraarpachai, Woranontee"],["dc.contributor.author","Shoubridge, Eric A."],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:48:20Z"],["dc.date.available","2017-09-07T11:48:20Z"],["dc.date.issued","2012"],["dc.description.abstract","Mitochondrial respiratory-chain complexes assemble from subunits of dual genetic origin assisted by specialized assembly factors. Whereas core subunits are translated on mitochondrial ribosomes, others are imported after cytosolic translation. How imported subunits are ushered to assembly intermediates containing mitochondria-encoded subunits is unresolved. Here, we report a comprehensive dissection of early cytochrome c oxidase assembly intermediates containing proteins required for normal mitochondrial translation and reveal assembly factors promoting biogenesis of human respiratory-chain complexes. We find that TIM21, a subunit of the inner-membrane presequence translocase, is also present in the major assembly intermediates containing newly mitochondria-synthesized and imported respiratory-chain subunits, which we term MITRAC complexes. Human TIM21 is dispensable for protein import but required for integration of early-assembling, presequence-containing subunits into respiratory-chain intermediates. We establish an unexpected molecular link between the TIM23 transport machinery and assembly of respiratory-chain complexes that regulate mitochondrial protein synthesis in response to their assembly state."],["dc.identifier.doi","10.1016/j.cell.2012.11.053"],["dc.identifier.gro","3142426"],["dc.identifier.isi","000312890300017"],["dc.identifier.pmid","23260140"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/8152"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0092-8674"],["dc.title","MITRAC Links Mitochondrial Protein Translocation to Respiratory-Chain Assembly and Translational Regulation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2020Journal Article
    [["dc.bibliographiccitation.firstpage","108334"],["dc.bibliographiccitation.journal","Mutation Research. Reviews in Mutation Research"],["dc.bibliographiccitation.volume","786"],["dc.contributor.author","Bayona-Bafaluy, M.Pilar"],["dc.contributor.author","Iglesias, Eldris"],["dc.contributor.author","López-Gallardo, Ester"],["dc.contributor.author","Emperador, Sonia"],["dc.contributor.author","Pacheu-Grau, David"],["dc.contributor.author","Labarta, Lorenzo"],["dc.contributor.author","Montoya, Julio"],["dc.contributor.author","Ruiz-Pesini, Eduardo"],["dc.date.accessioned","2021-04-14T08:32:00Z"],["dc.date.available","2021-04-14T08:32:00Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.1016/j.mrrev.2020.108334"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83771"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.relation.issn","1383-5742"],["dc.title","Genetic aspects of the oxidative phosphorylation dysfunction in dilated cardiomyopathy"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI