Now showing 1 - 4 of 4
  • 2008Journal Article
    [["dc.bibliographiccitation.firstpage","1109"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Annals of Botany"],["dc.bibliographiccitation.lastpage","1123"],["dc.bibliographiccitation.volume","101"],["dc.contributor.author","Buck-Sorlin, Gerhard H."],["dc.contributor.author","Hemmerling, Reinhard"],["dc.contributor.author","Kniemeyer, Ole"],["dc.contributor.author","Burema, Benno"],["dc.contributor.author","Kurth, Winfried"],["dc.date.accessioned","2018-11-07T11:15:17Z"],["dc.date.available","2018-11-07T11:15:17Z"],["dc.date.issued","2008"],["dc.description.abstract","Background and Aims Functional-structural plant models (FSPM) constitute a paradigm in plant modelling that combines 3D structural and graphical modelling with the simulation of plant processes. While structural aspects of plant development could so far be represented using rule-based formalisms such as Lindenmayer systems, process models were traditionally written using a procedural code. The faithful representation of structures interacting with functions across scales, however, requires a new modelling formalism. Therefore relational growth grammars (RGG) were developed on the basis of Lindenmayer systems. Methods In order to implement and test RGG, a new modelling language, the eXtended L-system language (XL) was created. Models using XL are interpreted by the interactive, Java-based modelling platform GroIMP. Three models, a semi-quantitative gibberellic acid (GA) signal transduction model, and a phytochrome-based shade detection and object avoidance model, both coupled to an existing morphogenetic structural model of barley (Hordeum vulgare L.), serve as examples to demonstrate the versatility and suitability of RGG and XL to represent the interaction of diverse biological processes across hierarchical scales. Key Results The dynamics of the concentrations in the signal transduction network could be modelled qualitatively and the phenotypes of GA-response mutants faithfully reproduced. The light model used here was simple to use yet effective enough to carry out local measurement of red:far-red ratios. Suppression of tillering at low red:far-red ratios could be simulated. Conclusions The RGG formalism is suitable for implementation of multi-scaled FSPM of plants interacting with their environment via hormonal control. However, their ensuing complexity requires careful design. On the positive side, such an FSPM displays knowledge gaps better thereby guiding future experimental design."],["dc.identifier.doi","10.1093/aob/mcm172"],["dc.identifier.isi","000255524800005"],["dc.identifier.pmid","17766311"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/54335"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Oxford Univ Press"],["dc.relation.issn","0305-7364"],["dc.title","A rule-based model of barley morphogenesis, with special respect to shading and gibberellic acid signal transduction"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2008Conference Paper
    [["dc.bibliographiccitation.firstpage","739"],["dc.bibliographiccitation.issue","9-10"],["dc.bibliographiccitation.journal","Functional Plant Biology"],["dc.bibliographiccitation.lastpage","750"],["dc.bibliographiccitation.volume","35"],["dc.contributor.author","Hemmerling, Reinhard"],["dc.contributor.author","Kniemeyer, Ole"],["dc.contributor.author","Lanwert, Dirk"],["dc.contributor.author","Kurth, Winfried"],["dc.contributor.author","Buck-Sorlin, Gerhard H."],["dc.date.accessioned","2018-11-07T11:19:57Z"],["dc.date.available","2018-11-07T11:19:57Z"],["dc.date.issued","2008"],["dc.description.abstract","The programming language XL ('eXtended L-system language') is an extension of Java, which supports the specification and execution of relational growth grammars, a variant of parallel graph grammars. XL is a powerful generalisation of the well-known L-system approach to functional-structural plant modelling. Some features of XL are discussed that are particularly useful for combining structure and function and for querying plant architectural data, and an exemplary functional-structural plant model of young beech trees is presented that is implemented in XL and includes PAR distribution, assimilate allocation and morphological plasticity. Together with a simpler model of spruce trees, this beech model is included in a virtual landscape with a mixed-species forest stand where competition for light occurs. The open-source platform GroIMP was used for the complete model development process and for visualising the results."],["dc.identifier.doi","10.1071/FP08052"],["dc.identifier.isi","000260794000002"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/55412"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Csiro Publishing"],["dc.publisher.place","Collingwood"],["dc.relation.conference","5th International Workshop on Functional Structural Plant Models"],["dc.relation.eventlocation","Napier, NEW ZEALAND"],["dc.relation.issn","1445-4408"],["dc.title","The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition"],["dc.type","conference_paper"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","33"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Computing and Informatics"],["dc.bibliographiccitation.lastpage","54"],["dc.bibliographiccitation.volume","36"],["dc.contributor.author","Henke, Michael"],["dc.contributor.author","Kniemeyer, Ole"],["dc.contributor.author","Kurth, Winfried"],["dc.date.accessioned","2019-07-09T11:44:48Z"],["dc.date.available","2019-07-09T11:44:48Z"],["dc.date.issued","2017"],["dc.description.abstract","Two well-known approaches for modelling virtual vegetation are grammar- based methods (L-systems) and the Xfrog method, which is based on graph transformations expanding \\multiplier\" nodes. We show that both approaches can be uni ed in the framework of \\relational growth grammars\", a variant of parallel graph grammars. We demonstrate this possibility and the synergistic bene ts of the combination of both methods at simple plant models which were processed using our open-source software GroIMP."],["dc.identifier.doi","10.4149/cai_2017_1_33"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14909"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59100"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1335-9150"],["dc.relation.orgunit","Abteilung Ökoinformatik, Biometrie und Waldwachstum"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","570"],["dc.title","Realization and Extension of the Xfrog Approach for Plant Modelling in the Graph-Grammar Based Language XL"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","75"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Forestry Journal"],["dc.bibliographiccitation.lastpage","91"],["dc.bibliographiccitation.volume","58"],["dc.contributor.author","Kurth, Winfried"],["dc.contributor.author","Kniemeyer, Ole"],["dc.contributor.author","Sloboda, Branislav"],["dc.date.accessioned","2019-07-10T08:14:11Z"],["dc.date.available","2019-07-10T08:14:11Z"],["dc.date.issued","2012"],["dc.description.abstract","Relational Growth Grammars are systems of rewriting rules (graph grammars) with graphical interpretation. They allow a feedback from the created virtual 3-d structures to the subsequent ruleapplication process. Using them it is possible to combine morphological (genetically fixed) growth rules with environmental impact and with functions evaluating the competitive situation of individual plants. Relational Growth Grammars are thus an ideal tool for precise specification of functional-structural models of plant growth and architecture. The dynamics of stand development in such models results from purely local rule application. Preliminary results are shown for three applications in forest-ecosystem modelling: (a) Creation of irregular stand structures, (b) simulation of competitive effects on crown radius development and resulting stand dynamics, and (c) modelling the interaction between trees and herbivores, based on the energy budgets of the individual plants and animals. The latter model includes genetical transfer and evolution of the foraging strategy of the animals. The software system GroIMP (Growth-grammar related Interactive Modelling Platform), an open source project available under www. grogra.de, was designed to interpret Relational Growth Grammars in an object-oriented framework. It also serves to visualize the resulting spatial structures. The code, executable by GroIMP, for the abovementioned models is completely documented and explained. By our examples, we hope to motivate the readers to use rule-based structural models in forest ecology."],["dc.description.abstract","Relačné rastové gramatiky sú systémy prepisovacích pravidiel (grafové gramatiky) s grafickou interpretáciou. Umožňujú spätnú väzbu z vytvorených virtuálnych 3D štruktúr do ďalšieho procesu aplikácie pravidiel. Ich použitím je možné kombinovať morfologické (geneticky viazané) rastové pravidlá s environmentálnym vplyvom a s funkciami hodnotiacimi konkurenčnú situáciu jednotlivých rastlín. Relačné rastové gramatiky sú preto ideálnym nástrojom na presnú špecifikáciu funkčno-štrukturálnych modelov rastu a architektúry rastlín. Dynamika vývoja porastu v takýchto modeloch vyplýva z čisto lokálnej aplikácie pravidiel. Predbežné výsledky sú ukázané na troch aplikáciách modelovania lesného ekosystému: (a) Tvorba nepravidelných porastových štruktúr, (b) simulácia vplyvov konkurencie na vývoj polomeru koruny a výslednú dynamiku porastu a (c) modelovanie interakcie medzi stromami a herbivormi, založené na energetických nárokoch individuálnych rastlín a živočíchov. Posledný model zahŕňa genetický prenos a evolúciu potravnej stratégie živočíchov. Softvérový systém GroIMP (Growth- grammar related Interactive Modelling Platform), open source projekt prístupný na www.grogra.de, bol navrhnutý na interpretáciu relačných rastových gramatík v objektovo orientovanom rámci. Tiež slúži na vizualizáciu výsledných priestorových štruktúr. Kód, spustiteľný v GroIMPe, je pre vyššie spomenuté modely kompletne dokumentovaný a vysvetlený. Dúfame, že uvedenými príkladmi budeme motivovať čitateľov k používaniu na pravidlách založených štrukturálnych modelov v ekológii lesa."],["dc.identifier.doi","10.2478/v10114-011-0012-0"],["dc.identifier.fs","589420"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/9919"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/61462"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.relation.issn","0323-1046"],["dc.relation.orgunit","Fakultät für Forstwissenschaften und Waldökologie"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.subject.ddc","570"],["dc.title","Forest Structure, competition and plan"],["dc.title.alternative","Herbivore ineraction modelled with relational growth grammars"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI