Now showing 1 - 4 of 4
  • 2022Journal Article
    [["dc.bibliographiccitation.artnumber","e71527"],["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Codutti, Agnese"],["dc.contributor.author","Charsooghi, Mohammad A"],["dc.contributor.author","Cerdá-Doñate, Elisa"],["dc.contributor.author","Taïeb, Hubert M"],["dc.contributor.author","Robinson, Tom"],["dc.contributor.author","Faivre, Damien"],["dc.contributor.author","Klumpp, Stefan"],["dc.date.accessioned","2022-09-01T09:51:21Z"],["dc.date.available","2022-09-01T09:51:21Z"],["dc.date.issued","2022"],["dc.description.abstract","Swimming microorganisms often experience complex environments in their natural habitat. The same is true for microswimmers in envisioned biomedical applications. The simple aqueous conditions typically studied in the lab differ strongly from those found in these environments and often exclude the effects of small volume confinement or the influence that external fields have on their motion. In this work, we investigate magnetically steerable microswimmers, specifically magnetotactic bacteria, in strong spatial confinement and under the influence of an external magnetic field. We trap single cells in micrometer-sized microfluidic chambers and track and analyze their motion, which shows a variety of different trajectories, depending on the chamber size and the strength of the magnetic field. Combining these experimental observations with simulations using a variant of an active Brownian particle model, we explain the variety of trajectories by the interplay between the wall interactions and the magnetic torque. We also analyze the pronounced cell-to-cell heterogeneity, which makes single-cell tracking essential for an understanding of the motility patterns. In this way, our work establishes a basis for the analysis and prediction of microswimmer motility in more complex environments."],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship"," Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659"],["dc.description.sponsorship","BMBF and Max Planck Society"],["dc.description.sponsorship","IMPRS on Multiscale Biosystems"],["dc.identifier.doi","10.7554/eLife.71527"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/113943"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-597"],["dc.relation.eissn","2050-084X"],["dc.rights.uri","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Interplay of surface interaction and magnetic torque in single-cell motion of magnetotactic bacteria in microfluidic confinement"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2020Journal Article
    [["dc.bibliographiccitation.journal","eLife"],["dc.bibliographiccitation.volume","9"],["dc.contributor.author","Bente, Klaas"],["dc.contributor.author","Mohammadinejad, Sarah"],["dc.contributor.author","Charsooghi, Mohammad Avalin"],["dc.contributor.author","Bachmann, Felix"],["dc.contributor.author","Codutti, Agnese"],["dc.contributor.author","Lefèvre, Christopher T"],["dc.contributor.author","Klumpp, Stefan"],["dc.contributor.author","Faivre, Damien"],["dc.date.accessioned","2020-12-10T18:48:08Z"],["dc.date.available","2020-12-10T18:48:08Z"],["dc.date.issued","2020"],["dc.identifier.doi","10.7554/eLife.47551"],["dc.identifier.eissn","2050-084X"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/79027"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","High-speed motility originates from cooperatively pushing and pulling flagella bundles in bilophotrichous bacteria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2021Journal Article
    [["dc.bibliographiccitation.firstpage","174102"],["dc.bibliographiccitation.issue","17"],["dc.bibliographiccitation.journal","Applied Physics Letters"],["dc.bibliographiccitation.volume","118"],["dc.contributor.author","Bachmann, Felix"],["dc.contributor.author","Giltinan, Joshua"],["dc.contributor.author","Codutti, Agnese"],["dc.contributor.author","Klumpp, Stefan"],["dc.contributor.author","Sitti, Metin"],["dc.contributor.author","Faivre, Damien"],["dc.date.accessioned","2021-09-01T06:42:16Z"],["dc.date.available","2021-09-01T06:42:16Z"],["dc.date.issued","2021"],["dc.identifier.doi","10.1063/5.0045454"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/89020"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-455"],["dc.relation.eissn","1077-3118"],["dc.relation.issn","0003-6951"],["dc.title","Opportunities and utilization of branching and step-out behavior in magnetic microswimmers with a nonlinear response"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2017Journal Article
    [["dc.bibliographiccitation.firstpage","567a"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Biophysical Journal"],["dc.bibliographiccitation.volume","112"],["dc.contributor.author","Klumpp, Stefan"],["dc.contributor.author","Lefevre, Christopher"],["dc.contributor.author","Landau, Livnat"],["dc.contributor.author","Codutti, Agnese"],["dc.contributor.author","Bennet, Mathieu"],["dc.contributor.author","Faivre, Damien"],["dc.date.accessioned","2020-12-10T14:22:43Z"],["dc.date.available","2020-12-10T14:22:43Z"],["dc.date.issued","2017"],["dc.identifier.doi","10.1016/j.bpj.2016.11.3052"],["dc.identifier.issn","0006-3495"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71706"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Magneto-Aerotaxis: Bacterial Motility in Magnetic Fields"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]
    Details DOI