Now showing 1 - 3 of 3
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","823"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","New Phytologist"],["dc.bibliographiccitation.lastpage","837"],["dc.bibliographiccitation.volume","202"],["dc.contributor.author","König, Stefanie"],["dc.contributor.author","Feussner, Kirstin"],["dc.contributor.author","Kaever, Alexander"],["dc.contributor.author","Landesfeind, Manuel"],["dc.contributor.author","Thurow, Corinna"],["dc.contributor.author","Karlovsky, Petr"],["dc.contributor.author","Gatz, Christiane"],["dc.contributor.author","Polle, Andrea"],["dc.contributor.author","Feußner, Ivo"],["dc.date.accessioned","2017-09-07T11:50:45Z"],["dc.date.available","2017-09-07T11:50:45Z"],["dc.date.issued","2014"],["dc.description.abstract","Summary - Verticillium longisporum is a soil‐borne vascular pathogen causing economic loss in rape. Using the model plant Arabidopsis this study analyzed metabolic changes upon fungal infection in order to identify possible defense strategies of Brassicaceae against this fungus. - Metabolite fingerprinting identified infection‐induced metabolites derived from the phenylpropanoid pathway. Targeted analysis confirmed the accumulation of sinapoyl glucosides, coniferin, syringin and lignans in leaves from early stages of infection on. At later stages, the amounts of amino acids increased. - To test the contribution of the phenylpropanoid pathway, mutants in the pathway were analyzed. The sinapate‐deficient mutant fah1‐2 showed stronger infection symptoms than wild‐type plants, which is most likely due to the lack of sinapoyl esters. Moreover, the coniferin accumulating transgenic plant UGT72E2‐OE was less susceptible. Consistently, sinapoyl glucose, coniferyl alcohol and coniferin inhibited fungal growth and melanization in vitro, whereas sinapyl alcohol and syringin did not. The amount of lignin was not significantly altered supporting the notion that soluble derivatives of the phenylpropanoid pathway contribute to defense. - These data show that soluble phenylpropanoids are important for the defense response of Arabidopsis against V. longisporum and that metabolite fingerprinting is a valuable tool to identify infection‐relevant metabolic markers."],["dc.identifier.doi","10.1111/nph.12709"],["dc.identifier.gro","3147731"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/5128"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0028-646X"],["dc.title","Soluble phenylpropanoids are involved in the defense response of Arabidopsis against Verticillium longisporum"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2012Journal Article
    [["dc.bibliographiccitation.firstpage","1086"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","New Phytologist"],["dc.bibliographiccitation.lastpage","1097"],["dc.bibliographiccitation.volume","196"],["dc.contributor.author","Koenig, Stefanie"],["dc.contributor.author","Feussner, Kirstin"],["dc.contributor.author","Schwarz, Marnie"],["dc.contributor.author","Kaever, Alexander"],["dc.contributor.author","Iven, Tim"],["dc.contributor.author","Landesfeind, Manuel"],["dc.contributor.author","Ternes, Philipp"],["dc.contributor.author","Karlovsky, Petr"],["dc.contributor.author","Lipka, Volker"],["dc.contributor.author","Feussner, Ivo"],["dc.date.accessioned","2018-11-07T09:03:07Z"],["dc.date.available","2018-11-07T09:03:07Z"],["dc.date.issued","2012"],["dc.description.abstract","In Arabidopsis, the fatty acid moiety of sphingolipids is mainly alpha-hydroxylated. The consequences of a reduction in this modification were analysed. Mutants of both Fatty Acid Hydroxylase genes (AtFAH1 and AtFAH2) were analysed for sphingolipid profiles. To elucidate further consequences of the mutations, metabolic analyses were performed and the influence on pathogen defence was determined. Ceramide and glucosylceramide profiles of double-mutant plants showed a reduction in sphingolipids with alpha-hydroxylated fatty acid moieties, and an accumulation of sphingolipids without these moieties. In addition, the free trihydroxylated long-chain bases and ceramides were increased by five- and ten-fold, respectively, whereas the amount of glucosylceramides was decreased by 25%. Metabolite analysis of the double mutant revealed salicylates as enriched metabolites. Infection experiments supported the metabolic changes, as the double mutant showed an enhanced disease-resistant phenotype for infection with the obligate biotrophic pathogen Golovinomyces cichoracearum. In summary, these results suggest that fatty acid hydroxylation of ceramides is important for the biosynthesis of complex sphingolipids. Its absence leads to the accumulation of long-chain bases and ceramides as their precursors. This increases salicylate levels and resistance towards obligate biotrophic fungal pathogens, confirming a role of sphingolipids in salicylic acid-dependent defence reactions."],["dc.description.sponsorship","DFG Research Unit FOR546 [Fe 446/6, Ka 1209/3, FL3 INST 186/822-1]"],["dc.identifier.doi","10.1111/j.1469-8137.2012.04351.x"],["dc.identifier.isi","000310676400016"],["dc.identifier.pmid","23025549"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/24836"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","0028-646X"],["dc.title","Arabidopsis mutants of sphingolipid fatty acid alpha-hydroxylases accumulate ceramides and salicylates"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article
    [["dc.bibliographiccitation.firstpage","565"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","New Phytologist"],["dc.bibliographiccitation.lastpage","581"],["dc.bibliographiccitation.volume","202"],["dc.contributor.author","Van-Tuan Tran, Van-Tuan Tran"],["dc.contributor.author","Braus-Stromeyer, Susanna A."],["dc.contributor.author","Kusch, Harald"],["dc.contributor.author","Reusche, Michael"],["dc.contributor.author","Kaever, Alexander"],["dc.contributor.author","Kuehn, Anika"],["dc.contributor.author","Valerius, Oliver"],["dc.contributor.author","Landesfeind, Manuel"],["dc.contributor.author","Asshauer, Kathrin"],["dc.contributor.author","Tech, Maike"],["dc.contributor.author","Hoff, Katharina J."],["dc.contributor.author","Pena-Centeno, Tonatiuh"],["dc.contributor.author","Stanke, Mario"],["dc.contributor.author","Lipka, Volker"],["dc.contributor.author","Braus, Gerhard H."],["dc.date.accessioned","2018-11-07T09:41:36Z"],["dc.date.available","2018-11-07T09:41:36Z"],["dc.date.issued","2014"],["dc.description.abstract"," Six transcription regulatory genes of the Verticillium plant pathogen, which reprogrammed nonadherent budding yeasts for adhesion, were isolated by a genetic screen to identify control elements for early plant infection.Verticillium transcription activator of adhesion Vta2 is highly conserved in filamentous fungi but not present in yeasts. The Magnaporthe grisea ortholog conidiation regulator Con7 controls the formation of appressoria which are absent in Verticillium species. Vta2 was analyzed by using genetics, cell biology, transcriptomics, secretome proteomics and plant pathogenicity assays. Nuclear Vta2 activates the expression of the adhesin-encoding yeast flocculin genes FLO1 and FLO11. Vta2 is required for fungal growth of Verticillium where it is a positive regulator of conidiation. Vta2 is mandatory for accurate timing and suppression of microsclerotia as resting structures. Vta2 controls expression of 270 transcripts, including 10 putative genes for adhesins and 57 for secreted proteins. Vta2 controls the level of 125 secreted proteins, including putative adhesins or effector molecules and a secreted catalase-peroxidase. Vta2 is a major regulator of fungal pathogenesis, and controls host-plant root infection and H2O2 detoxification.Verticillium impaired in Vta2 is unable to colonize plants and induce disease symptoms. Vta2 represents an interesting target for controlling the growth and development of these vascular pathogens."],["dc.identifier.doi","10.1111/nph.12671"],["dc.identifier.isi","000333060500027"],["dc.identifier.pmid","24433459"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/33771"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","1469-8137"],["dc.relation.issn","0028-646X"],["dc.title","Verticillium transcription activator of adhesion Vta2 suppresses microsclerotia formation and is required for systemic infection of plant roots"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS