Options
Maier, Katharina
Loading...
Preferred name
Maier, Katharina
Official Name
Maier, Katharina
Alternative Name
Maier, K.
Now showing 1 - 5 of 5
2005Journal Article [["dc.bibliographiccitation.firstpage","375"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Brain"],["dc.bibliographiccitation.lastpage","385"],["dc.bibliographiccitation.volume","128"],["dc.contributor.author","Diem, Ricarda"],["dc.contributor.author","Sättler, Muriel B."],["dc.contributor.author","Merkler, Doron"],["dc.contributor.author","Demmer, Iris"],["dc.contributor.author","Maier, Katharina"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.contributor.author","Bähr, Mathias"],["dc.date.accessioned","2017-09-07T11:45:35Z"],["dc.date.available","2017-09-07T11:45:35Z"],["dc.date.issued","2005"],["dc.description.abstract","Neurodegenerative processes determine the clinical disease course of multiple sclerosis, an inflammatory autoimmune CNS disease that frequently manifests with acute optic neuritis. None of the established multiple sclerosis therapies has been shown to clearly reduce neurodegeneration. In a rat model of experimental autoimmune encephalomyelitis, we recently demonstrated increased neuronal apoptosis under methylprednisolone therapy, although CNS inflammation was effectively controlled. In the present study, we combined steroid treatment with application of erythropoietin to target inflammatory as well as neurodegenerative aspects. After immunization with myelin oligodendrocyte glycoprotein (MOG), animals were randomly assigned to six treatment groups receiving different combinations of erythropoietin and methylprednisolone, or respective monotherapies. After MOG-induced experimental autoimmune encephalomyelitis became clinically manifest, optic neuritis was monitored by recording visual evoked potentials. The function of retinal ganglion cells, the neurons that form the axons of the optic nerve, was measured by electroretinograms. Functional and histo pathological data of retinal ganglion cells and optic nerves revealed that neuron and axon protection was most effective when erythropoietin treatment that was started at immunization was combined with high-dose methylprednisolone therapy given from days 1 to 3 of MOG-induced experimental autoimmune encephalomyelitis. In contrast, isolated neuronal or axonal protection without clinical benefit was achieved under monotherapy with erythropoietin or methylprednisolone, respectively."],["dc.identifier.doi","10.1093/brain/awh365"],["dc.identifier.gro","3150407"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7168"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.doi","10.1093/brain/awh365"],["dc.relation.issn","0006-8950"],["dc.title","Combined therapy with methylprednisolone and erythropoietin in a model of multiple sclerosis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details DOI2004Journal Article Research Paper [["dc.bibliographiccitation.firstpage","378"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Brain pathology"],["dc.bibliographiccitation.lastpage","387"],["dc.bibliographiccitation.volume","14"],["dc.contributor.author","Maier, Katharina"],["dc.contributor.author","Rau, Christian R."],["dc.contributor.author","Storch, Maria K."],["dc.contributor.author","Sättler, Muriel B."],["dc.contributor.author","Demmer, Iris"],["dc.contributor.author","Weissert, Robert"],["dc.contributor.author","Taheri, Naimeh"],["dc.contributor.author","Kuhnert, Antje V."],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Diem, Ricarda"],["dc.date.accessioned","2017-09-07T11:43:14Z"],["dc.date.available","2017-09-07T11:43:14Z"],["dc.date.issued","2004"],["dc.description.abstract","Multiple sclerosis (MS) is a chronic inflammatory disease of the CNS which leads to demyelination, axonal destruction and neuronal loss in the early stages. Available therapies mainly target the inflammatory component of the disease but fail to prevent neurodegeneration. To investigate the effect of ciliary neurotrophic factor (CNTF) on the survival of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve, we used a rat model of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. Optic neuritis in this model was diagnosed by recording visual evoked potentials, and RGC function was monitored by measuring electroretinograms. This study demonstrates that CNTF has a neuroprotective effect on affected RGCs during acute optic neuritis. Furthermore, we demonstrate that CNTF exerts its neuroprotective effect through activation of the Janus kinase/signal transducer and activator of transcription pathway, mitogen activated protein kinases and a shift in the Bcl-2 family of proteins towards the anti-apoptotic side. In summary, our results demonstrate that CNTF can serve as an effective neuroprotective treatment in a rat model of MS that especially reflects the neurodegenerative aspects of this disease."],["dc.identifier.doi","10.1111/j.1750-3639.2004.tb00081.x"],["dc.identifier.isi","000225174100006"],["dc.identifier.pmid","15605985"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1508"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","1015-6305"],["dc.relation.issn","1015-6305"],["dc.title","Ciliary neurotrophic factor protects retinal ganglion cells from secondary cell death during acute autoimmune optic neuritis in rats"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2006Journal Article Research Paper [["dc.bibliographiccitation.firstpage","172"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Experimental Neurology"],["dc.bibliographiccitation.lastpage","181"],["dc.bibliographiccitation.volume","201"],["dc.contributor.author","Sättler, Muriel B."],["dc.contributor.author","Demmer, Iris"],["dc.contributor.author","Williams, Sarah K."],["dc.contributor.author","Maier, Katharina"],["dc.contributor.author","Merkler, Doron"],["dc.contributor.author","Gadjanski, Ivana"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Diem, Ricarda"],["dc.date.accessioned","2017-09-07T11:52:35Z"],["dc.date.available","2017-09-07T11:52:35Z"],["dc.date.issued","2006"],["dc.description.abstract","lntcrferon-beta-1a (IFN-beta-1a) is an approved treatment for multiple sclerosis (MS). It improves the disease course by reducing the relapse rate as well as the persistent neurological deficits. Recent MRI and post-mortem studies revealed that neuronal and axonal damage are most relevant for chronic disability in MS patients. We have characterized previously time course and mechanisms of neuronal apoptosis in a rat model of myelin oligodendrocyte glycoprotein (MOG)-induced optic neuritis. In this animal model, application of IFN-beta-1a three times per week slightly decreases the loss of retinal ganglion cells (RGCs), the neurons that form the axons within the optic nerve. In contrast to neurotrophic factors, this cytokine does not directly protect cultured RGCs from apoptosis. We conclude that IFN-beta-1a is a suitable candidate to be combined with a directly neuroprotective agent in order to further decrease axonal and neuronal degeneration in MS patients. (c) 2006 Elsevier Inc. All rights reserved."],["dc.identifier.doi","10.1016/j.expneurol.2006.04.015"],["dc.identifier.gro","3143633"],["dc.identifier.isi","000240152100019"],["dc.identifier.pmid","16764858"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1169"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0014-4886"],["dc.subject","EAE; interferon-beta; Neuronal apoptosis; Retinal ganglion cells; Mitogen-activated protein kinase; Axonal damage"],["dc.title","Effects of interferon-beta-1a on neuronal survival under autoimmune inflammatory conditions"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2006Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1353"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The American Journal of Pathology"],["dc.bibliographiccitation.lastpage","1364"],["dc.bibliographiccitation.volume","169"],["dc.contributor.author","Maier, K."],["dc.contributor.author","Kuhnert, A. V."],["dc.contributor.author","Taheri, N."],["dc.contributor.author","Sättler, M. B."],["dc.contributor.author","Storch, M. K."],["dc.contributor.author","Williams, S. K."],["dc.contributor.author","Bähr, M."],["dc.contributor.author","Diem, R."],["dc.date.accessioned","2017-09-07T11:52:29Z"],["dc.date.available","2017-09-07T11:52:29Z"],["dc.date.issued","2006"],["dc.description.abstract","Axonal destruction and neuronal loss occur early during multiple sclerosis (MS), an autoimmune inflammatory central nervous system disease that frequently manifests with acute optic neuritis. Glatiramer acetate (GA) and interferon-beta-1b (IFN-beta-1b) are two immunomodulatory agents that have been shown to decrease the frequency of MS relapses. However, the question of whether these substances can slow neurodegeneration in MS patients is the subject of controversy. In a rat model of experimental autoimmune encephalomyelitis, we investigated the effects of GA and IFN-beta-1b on the survival of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve. For each substance, therapy was, started 14 days before immunization, on the day of immunization, or on the day of clinical disease onset. After myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis became clinically manifest, optic neuritis was monitored by recording visual evoked potentials. The function of RGCs was measured by electroretinograms. Although early GA or IFN-beta-1b treatment showed benefit on disease activity, only treatment with GA exerted protective effects on RGCs, as revealed by measuring neurodegeneration and neuronal function. Furthermore, we demonstrate that this GA-induced neuroprotection does not exclusively depend on the reduction of inflammatory infiltrates within the optic nerve."],["dc.identifier.doi","10.2353/ajpath.2006.060159"],["dc.identifier.gro","3143616"],["dc.identifier.isi","000240872400023"],["dc.identifier.pmid","17003491"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1150"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0002-9440"],["dc.title","Effects of glatiramer acetate and interferon-beta on neurodegeneration in a model of multiple sclerosis: A comparative study"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2004Journal Article [["dc.bibliographiccitation.firstpage","S181"],["dc.bibliographiccitation.issue","Suppl. 2"],["dc.bibliographiccitation.journal","Cell Death and Differentiation"],["dc.bibliographiccitation.lastpage","S192"],["dc.bibliographiccitation.volume","11"],["dc.contributor.author","Sättler, Muriel B."],["dc.contributor.author","Merkler, Doron"],["dc.contributor.author","Maier, Katharina"],["dc.contributor.author","Stadelmann, Christine"],["dc.contributor.author","Ehrenreich, Hannelore"],["dc.contributor.author","Bähr, Mathias"],["dc.contributor.author","Diem, Ricarda"],["dc.date.accessioned","2017-09-07T11:45:34Z"],["dc.date.available","2017-09-07T11:45:34Z"],["dc.date.issued","2004"],["dc.description.abstract","In multiple sclerosis (MS), long-term disability is primarily caused by axonal and neuronal damage. We demonstrated in a previous study that neuronal apoptosis occurs early during experimental autoimmune encephalomyelitis, a common animal model of MS. In the present study, we show that, in rats suffering from myelin oligodendrocyte glycoprotein (MOG)-induced optic neuritis, systemic application of erythropoietin (Epo) significantly increased survival and function of retinal ganglion cells (RGCs), the neurons that form the axons of the optic nerve. We identified three independent intracellular signaling pathways involved in Epo-induced neuroprotection in vivo: Protein levels of phospho-Akt, phospho-MAPK 1 and 2, and Bcl-2 were increased under Epo application. Using a combined treatment of Epo together with a selective inhibitor of phosphatidylinositol 3-kinase (PI3-K) prevented upregulation of phospho-Akt and consecutive RGC rescue. We conclude that in MOG-EAE the PI3-K/Akt pathway has an important influence on RGC survival under systemic treatment with Epo."],["dc.identifier.doi","10.1038/sj.cdd.4401504"],["dc.identifier.gro","3150406"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7167"],["dc.language.iso","en"],["dc.notes.status","final"],["dc.relation.issn","1350-9047"],["dc.subject","optic neuritis; erythropoietin; retinal ganglion cells; Bcl-2 family; phosphatidylinositol 3-kinase"],["dc.title","Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI