Options
Schmitz, Matthias
Loading...
Preferred name
Schmitz, Matthias
Official Name
Schmitz, Matthias
Alternative Name
Schmitz, M.
Main Affiliation
Now showing 1 - 10 of 21
2019Journal Article [["dc.bibliographiccitation.firstpage","1863"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Molecular Neurobiology"],["dc.bibliographiccitation.lastpage","1874"],["dc.bibliographiccitation.volume","57"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Candelise, Niccolo"],["dc.contributor.author","Kanata, Eirini"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Thüne, Katrin"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","da Silva Correia, Susana Margarida"],["dc.contributor.author","Dafou, Dimitra"],["dc.contributor.author","Sklaviadis, Theodoros"],["dc.contributor.author","Appelhans, Dietmar"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2020-12-10T14:14:28Z"],["dc.date.available","2020-12-10T14:14:28Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1007/s12035-019-01837-w"],["dc.identifier.eissn","1559-1182"],["dc.identifier.issn","0893-7648"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/71354"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Validation of Poly(Propylene Imine) Glycodendrimers Towards Their Anti-prion Conversion Efficiency"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article Research Paper [["dc.bibliographiccitation.firstpage","691"],["dc.bibliographiccitation.issue","5"],["dc.bibliographiccitation.journal","Annals of Neurology"],["dc.bibliographiccitation.lastpage","703"],["dc.bibliographiccitation.volume","85"],["dc.contributor.author","Candelise, Niccolò"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Villar‐Piqué, Anna"],["dc.contributor.author","Cramm, Maria"],["dc.contributor.author","Thom, Tobias"],["dc.contributor.author","Silva Correia, Susana Margarida"],["dc.contributor.author","Cunha, José Eriton Gomes"],["dc.contributor.author","Möbius, Wiebke"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2021-06-01T10:49:23Z"],["dc.date.available","2021-06-01T10:49:23Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1002/ana.25446"],["dc.identifier.pmid","30805957"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86271"],["dc.identifier.url","https://sfb1286.uni-goettingen.de/literature/publications/82"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation","SFB 1286: Quantitative Synaptologie"],["dc.relation","SFB 1286 | B08: Definition von Kaskaden molekularer Veränderungen bei Synucleinopathien während der Neurodegeneration"],["dc.relation.eissn","1531-8249"],["dc.relation.issn","0364-5134"],["dc.relation.workinggroup","RG Outeiro (Experimental Neurodegeneration)"],["dc.title","Seeding variability of different alpha synuclein strains in synucleinopathies"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2018Journal Article [["dc.bibliographiccitation.firstpage","461"],["dc.bibliographiccitation.journal","Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring"],["dc.bibliographiccitation.lastpage","470"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Kruse, Niels"],["dc.contributor.author","Heslegrave, Amanda"],["dc.contributor.author","Gupta, Vandana"],["dc.contributor.author","Foiani, Martha"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Lehmann, Sylvain"],["dc.contributor.author","Teunissen, Charlotte"],["dc.contributor.author","Blennow, Kaj"],["dc.contributor.author","Zetterberg, Henrik"],["dc.contributor.author","Mollenhauer, Brit"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Llorens, Franc"],["dc.date.accessioned","2019-07-09T11:49:35Z"],["dc.date.available","2019-07-09T11:49:35Z"],["dc.date.issued","2018"],["dc.description.abstract","ntroduction: Cerebrospinal fluid α-synuclein level is increased in sporadic Creutzfeldt-Jakob disease cases. However, the clinical value of this biomarker remains to be established. In this study, we have addressed the clinical validation parameters and the interlaboratory reproducibility by using an electrochemiluminescent assay. Methods: Cerebrospinal fluid α-synuclein was quantified in a total of 188 sporadic Creutzfeldt-Jakob disease and non-Creutzfeldt-Jakob-disease cases to determine sensitivity and specificity values and lot-to-lot variability. Two round robin tests with 70 additional cases were performed in six independent laboratories. Results: A sensitivity of 93% and a specificity of 96% were achieved in discriminating sporadic Creutzfeldt-Jakob disease. No differences were detected between lots. The mean interlaboratory coefficient of variation was 23%, and the intralaboratory coefficient of variations ranged 2.70%-11.39%. Overall, 97% of samples were correctly diagnosed. Discussion: The herein validated α-synuclein assay is robust, accurate, and reproducible in identifying Creutzfeldt-Jakob disease cases. Thus, it is ready for implementation in the clinical practice to support the diagnosis of Creutzfeldt-Jakob disease."],["dc.identifier.doi","10.1016/j.dadm.2018.06.005"],["dc.identifier.pmid","30294658"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15718"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59586"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","610"],["dc.title","Interlaboratory validation of cerebrospinal fluid α-synuclein quantification in the diagnosis of sporadic Creutzfeldt-Jakob disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI PMID PMC2020Journal Article [["dc.bibliographiccitation.firstpage","290"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Biomolecules"],["dc.bibliographiccitation.volume","10"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Calero, Olga"],["dc.contributor.author","Stehmann, Christiane"],["dc.contributor.author","Sarros, Shannon"],["dc.contributor.author","Moda, Fabio"],["dc.contributor.author","Ferrer, Isidre"],["dc.contributor.author","Poleggi, Anna"],["dc.contributor.author","Pocchiari, Maurizio"],["dc.contributor.author","Catania, Marcella"],["dc.contributor.author","Klotz, Sigrid"],["dc.contributor.author","O’Regan, Carl"],["dc.contributor.author","Brett, Francesca"],["dc.contributor.author","Heffernan, Josephine"],["dc.contributor.author","Ladogana, Anna"],["dc.contributor.author","Collins, Steven J."],["dc.contributor.author","Calero, Miguel"],["dc.contributor.author","Kovacs, Gabor G."],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2020-12-10T18:46:57Z"],["dc.date.available","2020-12-10T18:46:57Z"],["dc.date.issued","2020"],["dc.description.sponsorship","Instituto de Salud Carlos III"],["dc.identifier.doi","10.3390/biom10020290"],["dc.identifier.eissn","2218-273X"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17338"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/78594"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","MDPI"],["dc.relation.eissn","2218-273X"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Diagnostic Accuracy of Prion Disease Biomarkers in Iatrogenic Creutzfeldt-Jakob Disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2021-04-21Journal Article [["dc.bibliographiccitation.artnumber","86"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Alzheimer's Research & Therapy"],["dc.bibliographiccitation.volume","13"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Varges, Daniela"],["dc.contributor.author","Ferrer, Isidre"],["dc.contributor.author","Riggert, Joachim"],["dc.contributor.author","Zetterberg, Henrik"],["dc.contributor.author","Blennow, Kaj"],["dc.contributor.author","Llorens, Franc"],["dc.date.accessioned","2021-06-01T09:42:16Z"],["dc.date.accessioned","2022-08-18T12:38:53Z"],["dc.date.available","2021-06-01T09:42:16Z"],["dc.date.available","2022-08-18T12:38:53Z"],["dc.date.issued","2021-04-21"],["dc.date.updated","2022-07-29T12:17:47Z"],["dc.description.abstract","Abstract\r\n \r\n Background\r\n Blood neurofilament light (Nfl) and total-tau (t-tau) have been described to be increased in several neurological conditions, including prion diseases and other neurodegenerative dementias. Here, we aim to determine the accuracy of plasma Nfl and t-tau in the differential diagnosis of neurodegenerative dementias and their potential value as prognostic markers of disease severity.\r\n \r\n \r\n Methods\r\n Plasma Nfl and t-tau were measured in healthy controls (HC, n = 70), non-neurodegenerative neurological disease with (NND-Dem, n = 17) and without dementia syndrome (NND, n = 26), Alzheimer’s disease (AD, n = 44), Creutzfeldt-Jakob disease (CJD, n = 83), dementia with Lewy bodies/Parkinson’s disease with dementia (DLB/PDD, n = 35), frontotemporal dementia (FTD, n = 12), and vascular dementia (VaD, n = 22). Biomarker diagnostic accuracies and cutoff points for the diagnosis of CJD were calculated, and associations between Nfl and t-tau concentrations with other fluid biomarkers, demographic, genetic, and clinical data in CJD cases were assessed. Additionally, the value of Nfl and t-tau predicting disease survival in CJD was evaluated.\r\n \r\n \r\n Results\r\n Among diagnostic groups, highest plasma Nfl and t-tau concentrations were detected in CJD (fold changes of 38 and 18, respectively, compared to HC). Elevated t-tau was able to differentiate CJD from all other groups, whereas elevated Nfl concentrations were also detected in NND-Dem, AD, DLB/PDD, FTD, and VaD compared to HC. Both biomarkers discriminated CJD from non-CJD dementias with an AUC of 0.93. In CJD, plasma t-tau, but not Nfl, was associated with PRNP codon 129 genotype and CJD subtype. Positive correlations were observed between plasma Nfl and t-tau concentrations, as well as between plasma and CSF concentrations of both biomarkers (p < 0.001). Nfl was increased in rapidly progressive AD (rpAD) compared to slow progressive AD (spAD) and associated to Mini-Mental State Examination results. However, Nfl displayed higher accuracy than t-tau discriminating CJD from rpAD and spAD. Finally, plasma t-tau, but not plasma Nfl, was significantly associated with disease duration, offering a moderate survival prediction capacity.\r\n \r\n \r\n Conclusions\r\n Plasma Nfl and t-tau are useful complementary biomarkers for the differential diagnosis of CJD. Additionally, plasma t-tau emerges as a potential prognostic marker of disease duration."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2021"],["dc.identifier.citation","Alzheimer's Research & Therapy. 2021 Apr 21;13(1):86"],["dc.identifier.doi","10.1186/s13195-021-00815-6"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17765"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85196"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112965"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.notes.intern","Merged from goescholar"],["dc.publisher","BioMed Central"],["dc.relation.eissn","1758-9193"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Dementia"],["dc.subject","Creutzfeldt-Jakob disease"],["dc.subject","Biomarkers"],["dc.subject","Plasma"],["dc.subject","Neurofilament light"],["dc.subject","Tau"],["dc.subject","Diagnosis"],["dc.subject","Disease progression"],["dc.title","Diagnostic and prognostic value of plasma neurofilament light and total-tau in sporadic Creutzfeldt-Jakob disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2021Journal Article [["dc.bibliographiccitation.firstpage","841"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","Acta Neuropathologica"],["dc.bibliographiccitation.lastpage","859"],["dc.bibliographiccitation.volume","141"],["dc.contributor.author","Diaz-Lucena, Daniela"],["dc.contributor.author","Kruse, Niels"],["dc.contributor.author","Thüne, Katrin"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","da Cunha, Jose Eriton Gomes"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","López-Pérez, Óscar"],["dc.contributor.author","Andrés-Benito, Pol"],["dc.contributor.author","Llorens, Franc"],["dc.date.accessioned","2021-06-01T09:42:50Z"],["dc.date.available","2021-06-01T09:42:50Z"],["dc.date.issued","2021"],["dc.description.abstract","Abstract Triggering receptor expressed on myeloid cells 2 (TREM2) is an innate immune cell surface receptor that regulates microglial function and is involved in the pathophysiology of several neurodegenerative diseases. Its soluble form (sTREM2) results from shedding of the TREM2 ectodomain. The role of TREM2 in prion diseases, a group of rapidly progressive dementias remains to be elucidated. In the present study, we analysed the expression of TREM2 and its main sheddase ADAM10 in the brain of sporadic Creutzfeldt-Jakob disease (sCJD) patients and evaluated the role of CSF and plasma sTREM2 as a potential diagnostic marker of prion disease. Our data indicate that, compared to controls, TREM2 is increased in sCJD patient brains at the mRNA and protein levels in a regional and subtype dependent fashion, and expressed in a subpopulation of microglia. In contrast, ADAM10 is increased at the protein, but not the mRNA level, with a restricted neuronal expression. Elevated CSF sTREM2 is found in sCJD, genetic CJD with mutations E200K and V210I in the prion protein gene ( PRNP ), and iatrogenic CJD, as compared to healthy controls (HC) (AUC = 0.78–0.90) and neurological controls (AUC = 0.73–0.85), while CSF sTREM2 is unchanged in fatal familial insomnia. sTREM2 in the CSF of cases with Alzheimer’s disease, and multiple sclerosis was not significantly altered in our series. CSF sTREM2 concentrations in sCJD are PRNP codon 129 and subtype-related, correlate with CSF 14-3-3 positivity, total-tau and YKL-40, and increase with disease progression. In plasma, sTREM2 is increased in sCJD compared with HC (AUC = 0.80), displaying positive correlations with plasma total-tau, neurofilament light, and YKL-40. We conclude that comparative study of TREM2 in brain and biological fluids of prion diseases reveals TREM2 to be altered in human prion diseases with a potential value in target engagement, patient stratification, and disease monitoring."],["dc.identifier.doi","10.1007/s00401-021-02296-1"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85371"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1432-0533"],["dc.relation.issn","0001-6322"],["dc.title","TREM2 expression in the brain and biological fluids in prion diseases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.journal","Molecular Neurobiology"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Canaslan, Sezgi"],["dc.contributor.author","Espinosa, Juan Carlos"],["dc.contributor.author","Fernández-Borges, Natalia"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Varges, Daniela"],["dc.contributor.author","Maass, Fabian"],["dc.contributor.author","Torres, Juan Maria"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2022-07-01T07:35:38Z"],["dc.date.available","2022-07-01T07:35:38Z"],["dc.date.issued","2022"],["dc.description.sponsorship"," Fundació La Marató de TV3 http://dx.doi.org/10.13039/100008666"],["dc.description.sponsorship"," Alzheimer Forschung Initiative http://dx.doi.org/10.13039/100010146"],["dc.description.sponsorship","Robert Koch-Institute through funds of the Federal Ministry of Health"],["dc.description.sponsorship","CJD Foundation"],["dc.identifier.doi","10.1007/s12035-022-02891-7"],["dc.identifier.pii","2891"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112222"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-581"],["dc.relation.eissn","1559-1182"],["dc.relation.issn","0893-7648"],["dc.rights.uri","https://www.springer.com/tdm"],["dc.title","Validation of Plasma and CSF Neurofilament Light Chain as an Early Marker for Sporadic Creutzfeldt-Jakob Disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2020Journal Article [["dc.bibliographiccitation.journal","Frontiers in Bioengineering and Biotechnology"],["dc.bibliographiccitation.volume","8"],["dc.contributor.author","Zerr, Inga"],["dc.contributor.author","Cramm, Maria"],["dc.contributor.author","da Silva Correia, Susana Margarida"],["dc.contributor.author","Zafar, Saima"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Schmitz, Matthias"],["dc.date.accessioned","2021-04-14T08:31:15Z"],["dc.date.available","2021-04-14T08:31:15Z"],["dc.date.issued","2020"],["dc.description.abstract","The real-time quaking-induced conversion (RT-QuIC) assay is a highly reproducible and robust methodology exhibiting an excellent pre-mortem diagnostic accuracy for prion diseases. However, the protocols might be time-consuming and improvement of the detection technology is needed. In the present study, we investigated the influence of a pre-analytical cerebrospinal fluid (CSF) treatment with proteinase K (PK) on the kinetic of the RT-QuIC signal response. For this purpose, we added PK at different concentrations in RT-QuIC reactions seeded with Creutzfeldt–Jakob disease (sCJD) CSF. We observed that a mild pre-analytical PK treatment of CSF samples resulted in an increased seeding efficiency of the RT-QuIC reaction. Quantitative seeding parameters, such as a higher area under the curve (AUC) value or a shorter lag phase indicated a higher conversion efficiency after treatment. The diagnostic accuracy resulting from 2 μg/ml PK treatment was analyzed in a retrospective study, where we obtained a sensitivity of 89%. Additionally, we analyzed the agreement with the previously established standard RT-QuIC protocol without PK treatment in a prospective study. Here, we found an overall agreement of 94% to 96%. A Cohen’s kappa of 0.9036 (95% CI: 0.8114–0.9958) indicates an almost perfect agreement between both protocols. In conclusion, the outcome of our study can be used for a further optimization of the RT-QuIC assay in particular for a reduction of the testing time."],["dc.identifier.doi","10.3389/fbioe.2020.586890"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17661"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/83533"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-399"],["dc.publisher","Frontiers Media S.A."],["dc.relation.eissn","2296-4185"],["dc.rights","http://creativecommons.org/licenses/by/4.0/"],["dc.title","Optimization of the Real-Time Quaking-Induced Conversion Assay for Prion Disease Diagnosis"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2022Journal Article [["dc.bibliographiccitation.journal","Brain"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Escaramís, Geòrgia"],["dc.contributor.author","Calero, Miguel"],["dc.contributor.author","Chen, Cao"],["dc.contributor.author","Kruse, Niels"],["dc.contributor.author","Cramm, Maria"],["dc.contributor.author","Golanska, Ewa"],["dc.contributor.author","Sikorska, Beata"],["dc.contributor.author","Llorens, Franc"],["dc.date.accessioned","2022-04-01T10:00:37Z"],["dc.date.available","2022-04-01T10:00:37Z"],["dc.date.issued","2022"],["dc.description.abstract","Abstract Genetic prion diseases are a rare and diverse group of fatal neurodegenerative disorders caused by pathogenic sequence variations in the prion protein gene, PRNP. Data on CSF biomarkers in patients with genetic prion diseases are limited and conflicting results have been reported for unclear reasons. Here, we aimed to analyse the diagnostic accuracy of CSF biomarkers currently used in prion clinical diagnosis in 302 symptomatic genetic prion disease cases from 11 prion diagnostic centres, encompassing a total of 36 different pathogenic sequence variations within the open reading frame of PRNP. CSF samples were assessed for the surrogate markers of neurodegeneration, 14-3-3 protein (14-3-3), total-tau protein (t-tau) and α-synuclein and for prion seeding activity through the real-time quaking-induced conversion assay. Biomarker results were compared with those obtained in healthy and neurological controls. For the most prevalent PRNP pathogenic sequence variations, biomarker accuracy and associations between biomarkers, demographic and genetic determinants were assessed. Additionally, the prognostic value of biomarkers for predicting total disease duration from symptom onset to death was investigated. High sensitivity of the four biomarkers was detected for genetic Creutzfeldt–Jakob disease associated with the E200K and V210I mutations, but low sensitivity was observed for mutations associated with Gerstmann–Sträussler–Scheinker syndrome and fatal familial insomnia. All biomarkers showed good to excellent specificity using the standard cut-offs often used for sporadic Creutzfeldt–Jakob disease. In genetic prion diseases related to octapeptide repeat insertions, the biomarker sensitivity correlated with the number of repeats. New genetic prion disease-specific cut-offs for 14-3-3, t-tau and α-synuclein were calculated. Disease duration in genetic Creutzfeldt–Jakob disease-E200K, Gerstmann–Sträussler–Scheinker-P102L and fatal familial insomnia was highly dependent on PRNP codon 129 MV polymorphism and was significantly associated with biomarker levels. In a large cohort of genetic prion diseases, the simultaneous analysis of CSF prion disease biomarkers allowed the determination of new mutation-specific cut-offs improving the discrimination of genetic prion disease cases and unveiled genetic prion disease-specific associations with disease duration."],["dc.identifier.doi","10.1093/brain/awab350"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/105472"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-530"],["dc.relation.eissn","1460-2156"],["dc.relation.issn","0006-8950"],["dc.title","Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","2811"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Molecular Neurobiology"],["dc.bibliographiccitation.lastpage","2821"],["dc.bibliographiccitation.volume","56"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Lachmann, Ingolf"],["dc.contributor.author","Karch, André"],["dc.contributor.author","Calero, Olga"],["dc.contributor.author","Stehmann, Christiane"],["dc.contributor.author","Sarros, Shannon"],["dc.contributor.author","Ladogana, Anna"],["dc.contributor.author","Poleggi, Anna"],["dc.contributor.author","Llorens, Franc"],["dc.date.accessioned","2021-06-01T10:49:20Z"],["dc.date.available","2021-06-01T10:49:20Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1007/s12035-018-1251-1"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/86253"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.relation.eissn","1559-1182"],["dc.relation.issn","0893-7648"],["dc.title","Cerebrospinal Fluid Total Prion Protein in the Spectrum of Prion Diseases"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI
- «
- 1 (current)
- 2
- 3
- »