Options
Schmitz, Matthias
Loading...
Preferred name
Schmitz, Matthias
Official Name
Schmitz, Matthias
Alternative Name
Schmitz, M.
Main Affiliation
Now showing 1 - 4 of 4
2021-02-22Journal Article Research Paper [["dc.bibliographiccitation.artnumber","11"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Molecular Neurodegeneration"],["dc.bibliographiccitation.volume","16"],["dc.contributor.author","Shafiq, Mohsin"],["dc.contributor.author","Zafar, Saima"],["dc.contributor.author","Younas, Neelam"],["dc.contributor.author","Noor, Aneeqa"],["dc.contributor.author","Puig, Berta"],["dc.contributor.author","Altmeppen, Hermann C."],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Matschke, Jakob"],["dc.contributor.author","Ferrer, Isidre"],["dc.contributor.author","Glatzel, Markus"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2021-06-01T10:48:05Z"],["dc.date.accessioned","2022-08-16T12:59:31Z"],["dc.date.available","2021-06-01T10:48:05Z"],["dc.date.available","2022-08-16T12:59:31Z"],["dc.date.issued","2021-02-22"],["dc.date.updated","2022-07-29T12:17:40Z"],["dc.description.abstract","Abstract\r\n \r\n Background\r\n High-density oligomers of the prion protein (HDPs) have previously been identified in brain tissues of patients with rapidly progressive Alzheimer’s disease (rpAD). The current investigation aims at identifying interacting partners of HDPs in the rpAD brains to unravel the pathological involvement of HDPs in the rapid progression.\r\n \r\n \r\n Methods\r\n HDPs from the frontal cortex tissues of rpAD brains were isolated using sucrose density gradient centrifugation. Proteins interacting with HDPs were identified by co-immunoprecipitation coupled with mass spectrometry. Further verifications were carried out using proteomic tools, immunoblotting, and confocal laser scanning microscopy.\r\n \r\n \r\n Results\r\n We identified rpAD-specific HDP-interactors, including the growth arrest specific 2-like 2 protein (G2L2). Intriguingly, rpAD-specific disturbances were found in the localization of G2L2 and its associated proteins i.e., the end binding protein 1, α-tubulin, and β-actin.\r\n \r\n \r\n Discussion\r\n The results show the involvement of HDPs in the destabilization of the neuronal actin/tubulin infrastructure. We consider this disturbance to be a contributing factor for the rapid progression in rpAD."],["dc.description.sponsorship","Open-Access-Finanzierung durch die Universitätsmedizin Göttingen 2021"],["dc.identifier.citation","Molecular Neurodegeneration. 2021 Feb 22;16(1):11"],["dc.identifier.doi","10.1186/s13024-021-00422-x"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/17736"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/85822"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/112753"],["dc.language.iso","en"],["dc.notes.intern","DOI-Import GROB-425"],["dc.notes.intern","Merged from goescholar"],["dc.relation.eissn","1750-1326"],["dc.relation.orgunit","Klinik für Neurologie"],["dc.rights","CC BY 4.0"],["dc.rights.holder","The Author(s)"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject","Rapidly progressive Alzheimer’s disease"],["dc.subject","rpAD"],["dc.subject","Growth arrest specific proteins"],["dc.subject","GAS"],["dc.subject","Growth arrest specific 2 like 2"],["dc.subject","G2L2"],["dc.subject","Prion protein oligomers"],["dc.subject","PrPC"],["dc.subject","Co-immunoprecipitation"],["dc.subject","Cytoskeleton"],["dc.subject","Actin"],["dc.subject","Tubulin"],["dc.title","Prion protein oligomers cause neuronal cytoskeletal damage in rapidly progressive Alzheimer’s disease"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2017Journal Article [["dc.bibliographiccitation.artnumber","83"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Molecular Neurodegeneration"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Thüne, Katrin"],["dc.contributor.author","Tahir, Waqas"],["dc.contributor.author","Kanata, Eirini"],["dc.contributor.author","Diaz-Lucena, Daniela"],["dc.contributor.author","Xanthopoulos, Konstantinos"],["dc.contributor.author","Kovatsi, Eleni"],["dc.contributor.author","Pleschka, Catharina"],["dc.contributor.author","Garcia-Esparcia, Paula"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Ozbay, Duru"],["dc.contributor.author","Correia, Susana"],["dc.contributor.author","Correia, Ângela"],["dc.contributor.author","Milosevic, Ira"],["dc.contributor.author","Andréoletti, Olivier"],["dc.contributor.author","Fernández-Borges, Natalia"],["dc.contributor.author","Vorberg, Ina M."],["dc.contributor.author","Glatzel, Markus"],["dc.contributor.author","Sklaviadis, Theodoros"],["dc.contributor.author","Torres, Juan Maria"],["dc.contributor.author","Krasemann, Susanne"],["dc.contributor.author","Sánchez-Valle, Raquel"],["dc.contributor.author","Ferrer, Isidro"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2019-07-09T11:44:59Z"],["dc.date.available","2019-07-09T11:44:59Z"],["dc.date.issued","2017"],["dc.description.abstract","Background YKL-40 (also known as Chitinase 3-like 1) is a glycoprotein produced by inflammatory, cancer and stem cells. Its physiological role is not completely understood but YKL-40 is elevated in the brain and cerebrospinal fluid (CSF) in several neurological and neurodegenerative diseases associated with inflammatory processes. Yet the precise characterization of YKL-40 in dementia cases is missing. Methods In the present study, we comparatively analysed YKL-40 levels in the brain and CSF samples from neurodegenerative dementias of different aetiologies characterized by the presence of cortical pathology and disease-specific neuroinflammatory signatures. Results YKL-40 was normally expressed in fibrillar astrocytes in the white matter. Additionally YKL-40 was highly and widely expressed in reactive protoplasmic cortical and perivascular astrocytes, and fibrillar astrocytes in sporadic Creutzfeldt-Jakob disease (sCJD). Elevated YKL-40 levels were also detected in Alzheimer’s disease (AD) but not in dementia with Lewy bodies (DLB). In AD, YKL-40-positive astrocytes were commonly found in clusters, often around β-amyloid plaques, and surrounding vessels with β-amyloid angiopathy; they were also distributed randomly in the cerebral cortex and white matter. YKL-40 overexpression appeared as a pre-clinical event as demonstrated in experimental models of prion diseases and AD pathology. CSF YKL-40 levels were measured in a cohort of 288 individuals, including neurological controls (NC) and patients diagnosed with different types of dementia. Compared to NC, increased YKL-40 levels were detected in sCJD (p < 0.001, AUC = 0.92) and AD (p < 0.001, AUC = 0.77) but not in vascular dementia (VaD) (p > 0.05, AUC = 0.71) or in DLB/Parkinson’s disease dementia (PDD) (p > 0.05, AUC = 0.70). Further, two independent patient cohorts were used to validate the increased CSF YKL-40 levels in sCJD. Additionally, increased YKL-40 levels were found in genetic prion diseases associated with the PRNP-D178N (Fatal Familial Insomnia) and PRNP-E200K mutations. Conclusions Our results unequivocally demonstrate that in neurodegenerative dementias, YKL-40 is a disease-specific marker of neuroinflammation showing its highest levels in prion diseases. Therefore, YKL-40 quantification might have a potential for application in the evaluation of therapeutic intervention in dementias with a neuroinflammatory component."],["dc.description.sponsorship","Open-Access-Publikationsfonds 2017"],["dc.identifier.doi","10.1186/s13024-017-0226-4"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14995"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59135"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.notes.intern","In goescholar not merged with http://resolver.sub.uni-goettingen.de/purl?gs-1/15151 but duplicate"],["dc.rights","CC BY 4.0"],["dc.rights.access","openAccess"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","YKL-40 in the brain and cerebrospinal fluid of neurodegenerative dementias"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]Details DOI2018Journal Article [["dc.bibliographiccitation.firstpage","e331"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","Neurology"],["dc.bibliographiccitation.lastpage","e338"],["dc.bibliographiccitation.volume","91"],["dc.contributor.author","Hermann, Peter"],["dc.contributor.author","Laux, Mareike"],["dc.contributor.author","Glatzel, Markus"],["dc.contributor.author","Matschke, Jakob"],["dc.contributor.author","Knipper, Tobias"],["dc.contributor.author","Goebel, Stefan"],["dc.contributor.author","Treig, Johannes"],["dc.contributor.author","Schulz-Schaeffer, Walter"],["dc.contributor.author","Cramm, Maria"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2020-12-10T18:41:44Z"],["dc.date.available","2020-12-10T18:41:44Z"],["dc.date.issued","2018"],["dc.identifier.doi","10.1212/WNL.0000000000005860"],["dc.identifier.eissn","1526-632X"],["dc.identifier.issn","0028-3878"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/77662"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","Validation and utilization of amended diagnostic criteria in Creutzfeldt-Jakob disease surveillance"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI2019Journal Article [["dc.bibliographiccitation.firstpage","1007"],["dc.bibliographiccitation.issue","11"],["dc.bibliographiccitation.journal","Expert review of molecular diagnostics"],["dc.bibliographiccitation.lastpage","1018"],["dc.bibliographiccitation.volume","19"],["dc.contributor.author","Thüne, Katrin"],["dc.contributor.author","Schmitz, Matthias"],["dc.contributor.author","Villar-Piqué, Anna"],["dc.contributor.author","Altmeppen, Hermann Clemens"],["dc.contributor.author","Schlomm, Markus"],["dc.contributor.author","Zafar, Saima"],["dc.contributor.author","Glatzel, Markus"],["dc.contributor.author","Llorens, Franc"],["dc.contributor.author","Zerr, Inga"],["dc.date.accessioned","2020-12-10T18:15:09Z"],["dc.date.available","2020-12-10T18:15:09Z"],["dc.date.issued","2019"],["dc.identifier.doi","10.1080/14737159.2019.1667231"],["dc.identifier.eissn","1744-8352"],["dc.identifier.issn","1473-7159"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/74763"],["dc.language.iso","en"],["dc.notes.intern","DOI Import GROB-354"],["dc.title","The cellular prion protein and its derived fragments in human prion diseases and their role as potential biomarkers"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dspace.entity.type","Publication"]]Details DOI