Options
Wardetzky, Max
Loading...
Preferred name
Wardetzky, Max
Official Name
Wardetzky, Max
Alternative Name
Wardetzky, M.
Main Affiliation
Now showing 1 - 2 of 2
2006Conference Paper [["dc.contributor.author","Bergou, Miklós"],["dc.contributor.author","Wardetzky, Max"],["dc.contributor.author","Harmon, David"],["dc.contributor.author","Zorin, Denis"],["dc.contributor.author","Grinspun, Eitan"],["dc.contributor.editor","Sheffer, Alla"],["dc.contributor.editor","Polthier, Konrad"],["dc.date.accessioned","2017-09-07T11:54:19Z"],["dc.date.available","2017-09-07T11:54:19Z"],["dc.date.issued","2006"],["dc.description.abstract","Relating the intrinsic Laplacian to the mean curvature normal, we arrive at a model for bending of inextensible surfaces. Due to its constant Hessian, our isometric bending model reduces cloth simulation times up to three-fold."],["dc.identifier.doi","10.2312/SGP/SGP06/227-230"],["dc.identifier.gro","3146535"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4319"],["dc.notes.intern","mathe"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.publisher","The Eurographics Association"],["dc.relation.isbn","3-905673-24-X"],["dc.relation.ispartof","Symposium on Geometry Processing"],["dc.relation.issn","1727-8384"],["dc.title","A Quadratic Bending Model for Inextensible Surfaces"],["dc.type","conference_paper"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI2007Journal Article [["dc.bibliographiccitation.firstpage","499"],["dc.bibliographiccitation.issue","8-9"],["dc.bibliographiccitation.journal","Computer Aided Geometric Design"],["dc.bibliographiccitation.lastpage","518"],["dc.bibliographiccitation.volume","24"],["dc.contributor.author","Wardetzky, Max"],["dc.contributor.author","Bergou, Miklós"],["dc.contributor.author","Harmon, David"],["dc.contributor.author","Zorin, Denis"],["dc.contributor.author","Grinspun, Eitan"],["dc.date.accessioned","2017-09-07T11:54:19Z"],["dc.date.available","2017-09-07T11:54:19Z"],["dc.date.issued","2007"],["dc.description.abstract","We present a family of discrete isometric bending models (IBMs) for triangulated surfaces in 3-space. These models are derived from an axiomatic treatment of discrete Laplace operators, using these operators to obtain linear models for discrete mean curvature from which bending energies are assembled. Under the assumption of isometric surface deformations we show that these energies are quadratic in surface positions. The corresponding linear energy gradients and constant energy Hessians constitute an efficient model for computing bending forces and their derivatives, enabling fast time-integration of cloth dynamics with a two- to three-fold net speedup over existing nonlinear methods, and near-interactive rates for Willmore smoothing of large meshes."],["dc.identifier.doi","10.1016/j.cagd.2007.07.006"],["dc.identifier.gro","3146531"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4315"],["dc.language.iso","en"],["dc.notes.intern","mathe"],["dc.notes.status","final"],["dc.notes.submitter","chake"],["dc.relation.issn","0167-8396"],["dc.title","Discrete quadratic curvature energies"],["dc.type","journal_article"],["dc.type.internalPublication","no"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]Details DOI