Now showing 1 - 2 of 2
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","472"],["dc.bibliographiccitation.issue","2"],["dc.bibliographiccitation.journal","Discrete & Computational Geometry"],["dc.bibliographiccitation.lastpage","501"],["dc.bibliographiccitation.volume","56"],["dc.contributor.author","Hoffmann, Tim"],["dc.contributor.author","Sageman-Furnas, Andrew O."],["dc.date.accessioned","2018-11-07T10:09:56Z"],["dc.date.available","2018-11-07T10:09:56Z"],["dc.date.issued","2016"],["dc.description.abstract","We present a Lax representation for discrete circular nets of constant negative Gau curvature. It is tightly linked to the 4D consistency of the Lax representation of discrete K-nets (in asymptotic line parametrization). The description gives rise to Backlund transformations and an associated family. All the members of that family-although no longer circular-can be shown to have constant Gau curvature as well. Explicit solutions for the Backlund transformations of the vacuum (in particular Dini's surfaces and breather solutions) and their respective associated families are given."],["dc.description.sponsorship","DFG-Collaborative Research Center [TRR109]"],["dc.identifier.doi","10.1007/s00454-016-9802-6"],["dc.identifier.isi","000380668700010"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/39751"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.relation.issn","1432-0444"],["dc.relation.issn","0179-5376"],["dc.title","A 2 x 2 Lax Representation, Associated Family, and Backlund Transformation for Circular K-Nets"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI WOS
  • 2014Journal Article
    [["dc.bibliographiccitation.journal","Int Math Res Notices"],["dc.contributor.author","Hoffmann, Tim"],["dc.contributor.author","Sageman-Furnas, Andrew O."],["dc.contributor.author","Wardetzky, Max"],["dc.date.accessioned","2017-09-07T11:54:08Z"],["dc.date.available","2017-09-07T11:54:08Z"],["dc.date.issued","2014"],["dc.identifier.arxiv","1412.7293"],["dc.identifier.doi","10.1093/imrn/rnw015"],["dc.identifier.gro","3146512"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4294"],["dc.notes.intern","Not valid abstract: We propose a discrete surface theory in $\\\\.mathbb R^3$ that unites the most prevalent versions of discrete special parametrizations. This theory encapsulates a large class of discrete surfaces given by a Lax representation and, in particular, the one-parameter associated families of constant curvature surfaces. The theory is not restricted to integrable geometries, but extends to a general surface theory."],["dc.notes.intern","mathe"],["dc.notes.status","public"],["dc.notes.submitter","chake"],["dc.title","A discrete parametrized surface theory in R^3"],["dc.type","journal_article"],["dc.type.internalPublication","unknown"],["dc.type.peerReviewed","no"],["dspace.entity.type","Publication"]]
    Details DOI