Now showing 1 - 2 of 2
  • 2019Journal Article
    [["dc.bibliographiccitation.firstpage","397"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Investigative Ophthalmology & Visual Science"],["dc.bibliographiccitation.lastpage","406"],["dc.bibliographiccitation.volume","60"],["dc.contributor.author","Gottschalk, Hanna M."],["dc.contributor.author","Wecker, Thomas"],["dc.contributor.author","Khattab, Mohammed H."],["dc.contributor.author","Fischer, Charlotte V."],["dc.contributor.author","Callizo, Josep"],["dc.contributor.author","Rehfeldt, Florian"],["dc.contributor.author","Lubjuhn, Roswitha"],["dc.contributor.author","Russmann, Christoph"],["dc.contributor.author","Hoerauf, Hans"],["dc.contributor.author","van Oterendorp, Christian"],["dc.date.accessioned","2019-07-09T11:50:10Z"],["dc.date.available","2019-07-09T11:50:10Z"],["dc.date.issued","2019"],["dc.description.abstract","Purpose: Contrast agents applicable for optical coherence tomography (OCT) imaging are rare. The intrascleral aqueous drainage system would be a potential application for a contrast agent, because the aqueous veins are of small diameter and located deep inside the highly scattering sclera. We tested lipid emulsions (LEs) as candidate OCT contrast agents in vitro and ex vivo, including milk and the anesthetic substance Propofol. Methods: Commercial OCT and OCT angiography (OCTA) devices were used. Maximum reflectivity and signal transmission of LE were determined in tube phantoms. Absorption spectra and light scattering was analyzed. The anterior chamber of enucleated porcine eyes was perfused with LEs, and OCTA imaging of the LEs drained via the aqueous outflow tract was performed. Results: All LEs showed a significantly higher reflectivity than water (P < 0.001). Higher milk lipid content was positively correlated with maximum reflectivity and negatively with signal transmission. Propofol exhibited the best overall performance. Due to a high degree of signal fluctuation, OCTA could be applied for detection of LE. Compared with blood, the OCTA signal of Propofol was significantly stronger (P = 0.001). As a proof of concept, time-resolved aqueous angiography of porcine eyes was performed. The three-dimensional (3D) structure and dynamics of the aqueous outflow were significantly different from humans. Conclusions: LEs induced a strong signal in OCT and OCTA. LE-based OCTA allowed the ability to obtain time-resolved 3D datasets of aqueous outflow. Possible interactions of LE with inner eye's structures need to be further investigated before in vivo application."],["dc.identifier.doi","10.1167/iovs.18-25223"],["dc.identifier.pmid","30682210"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/15874"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/59715"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1552-5783"],["dc.rights","CC BY-NC-ND 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by-nc-nd/4.0"],["dc.subject.ddc","610"],["dc.title","Lipid Emulsion-Based OCT Angiography for Ex Vivo Imaging of the Aqueous Outflow Tract."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC
  • 2017Journal Article
    [["dc.bibliographiccitation.artnumber","e0181766"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","PloS one"],["dc.bibliographiccitation.volume","12"],["dc.contributor.author","Callizo, Josep"],["dc.contributor.author","Feltgen, Nicolas"],["dc.contributor.author","Ammermann, Antje"],["dc.contributor.author","Ganser, Janina"],["dc.contributor.author","Bemme, Sebastian"],["dc.contributor.author","Bertelmann, Thomas"],["dc.contributor.author","Pfeiffer, Sebastian"],["dc.contributor.author","Duvinage, Andre"],["dc.contributor.author","Gröschel, Klaus"],["dc.contributor.author","Hoerauf, Hans"],["dc.contributor.author","Wachter, Rolf"],["dc.date.accessioned","2019-07-09T11:43:38Z"],["dc.date.available","2019-07-09T11:43:38Z"],["dc.date.issued","2017"],["dc.description.abstract","BACKGROUND: Patients with retinal vascular occlusion disease have an increased risk for ischemic stroke and share some risk factors with cerebrovascular disease. The purpose of this study was to analyze the prevalence of atrial fibrillation (AF) in subjects with retinal vascular occlusive disease and anterior ischemic optic neuropathy and to compare these data to an ischemic stroke group. METHODS: Prospective, observational single-center trial. Subjects with retinal artery occlusion (RAO), retinal vein occlusion (RVO) and anterior ischemic optic neuropathy (AION) were included. Patients with ischemic stroke (IS) from a previous observational trial were used as control. Investigation included 7-day Holter ECG, echocardiography, duplex ultrasonography of the carotid arteries, and 24-hour blood pressure monitoring. Further vascular risk factors were documented. RESULTS: During the 1-year study period, 101 patients were recruited. The control group with ischemic stroke consisted of 272 subjects. At inclusion, the prevalence of AF was 12% (RAO), 10.2% (RVO), 11.1% (NAION) and 15.8% (IS). The final prevalence after Holter ECG rose to 16% (RAO), 18.4% (RVO), 14.8% (NAION) and 26.5% (IS). No significant difference was measured between groups. CONCLUSIONS: We detected a similar prevalence of AF in all groups. RVO patients tended to exhibit a higher AF detection rate and lower number needed to screen than RAO and NAION. The detection of AF rose considerably via Holter ECG. As a consequence, we recommend prolonged ECG monitoring in patients with acute ophthalmic vascular diseases."],["dc.identifier.doi","10.1371/journal.pone.0181766"],["dc.identifier.pmid","28771491"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/14599"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/58930"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1932-6203"],["dc.rights","CC BY 4.0"],["dc.rights.uri","https://creativecommons.org/licenses/by/4.0"],["dc.subject.ddc","610"],["dc.title","Atrial fibrillation in retinal vascular occlusion disease and non-arteritic anterior ischemic optic neuropathy."],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC