Now showing 1 - 2 of 2
  • 2009Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","012048"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Physics. Conference Series"],["dc.bibliographiccitation.volume","172"],["dc.contributor.affiliation","S D Hügelmeyer, ; 1Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany"],["dc.contributor.affiliation","S Dreizler, ; 1Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany"],["dc.contributor.author","Hügelmeyer, S. D."],["dc.contributor.author","Dreizler, S."],["dc.date.accessioned","2019-07-09T11:52:44Z"],["dc.date.available","2019-07-09T11:52:44Z"],["dc.date.issued","2009"],["dc.date.updated","2022-02-19T14:35:34Z"],["dc.description.abstract","For a long time, no hydrogen-deficient white dwarfs have been known that have effective temperature between 30 kK and < 45 kK, i. e. exceeding those of DB white dwarfs and having lower ones than DO white dwarfs. Therefore, this temperature range was long known as the DB-gap. Only recently, the SDSS provided spectra of several candidate DB-gap stars. First analyses based on model spectra calculated under the assumption of local thermodynamic equilibrium (LTE) confirmed that these stars had 30 kK < Teff < 45 kK (Eisenstein et al. 2006). It has been shown for DO white dwarfs that the relaxation of LTE is necessary to account for non local effects in the atmosphere caused by the intense radiation field. Therefore, we calculated a non-LTE model grid and re-analysed the aforementioned set of SDSS spectra. Our results confirm the existence of DB-gap white dwarfs."],["dc.identifier.doi","10.1088/1742-6596/172/1/012048"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/5873"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/60258"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1742-6596"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.ddc","530"],["dc.title","Non-LTE spectral analyses of the lately discovered DB-gap white dwarfs from the SDSS"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI
  • 2009Journal Article Research Paper
    [["dc.bibliographiccitation.artnumber","012060"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","Journal of Physics. Conference Series"],["dc.bibliographiccitation.volume","172"],["dc.contributor.affiliation","S D Hügelmeyer, ; 1Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany"],["dc.contributor.affiliation","S Dreizler, ; 1Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany"],["dc.contributor.affiliation","D Homeier, ; 1Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany"],["dc.contributor.affiliation","P Hauschildt, ; 2Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg, Germany"],["dc.contributor.author","Hügelmeyer, S. D."],["dc.contributor.author","Dreizler, S."],["dc.contributor.author","Homeier, D."],["dc.contributor.author","Hauschildt, P."],["dc.date.accessioned","2019-07-09T11:52:44Z"],["dc.date.available","2019-07-09T11:52:44Z"],["dc.date.issued","2009"],["dc.date.updated","2022-02-19T14:40:41Z"],["dc.description.abstract","Gas and dust disks are common objects in the universe and can be found around various objects, e.g. young stars, cataclysmic variables, active galactic nuclei, or white dwarfs. The light that we receive from disks provides us with clues about their composition, temperature, and density. In order to better understand the physical and chemical dynamics of these disks, self-consistent radiative transfer simulations are inevitable. Therefore, we have developed a 1+1D radiative transfer code as an extension to the well-established model atmosphere code PHOENIX. We will show the potential of the application of our code to model the spectra of white dwarf debris disks."],["dc.identifier.doi","10.1088/1742-6596/172/1/012060"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/5874"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/60259"],["dc.language.iso","en"],["dc.notes.intern","Merged from goescholar"],["dc.relation.issn","1742-6596"],["dc.relation.orgunit","Fakultät für Physik"],["dc.rights","Goescholar"],["dc.rights.uri","https://goedoc.uni-goettingen.de/licenses"],["dc.subject.ddc","530"],["dc.title","Spectral synthesis of circumstellar disks - application to white dwarf debris disks"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI