Now showing 1 - 5 of 5
  • 2011Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","643"],["dc.bibliographiccitation.issue","4"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","656"],["dc.bibliographiccitation.volume","195"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Chacinska, Agnieszka"],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:43:19Z"],["dc.date.available","2017-09-07T11:43:19Z"],["dc.date.issued","2011"],["dc.description.abstract","N-terminal targeting signals (presequences) direct proteins across the TOM complex in the outer mitochondrial membrane and the TIM23 complex in the inner mitochondrial membrane. Presequences provide directionality to the transport process and regulate the transport machineries during translocation. However, surprisingly little is known about how presequence receptors interact with the signals and what role these interactions play during preprotein transport. Here, we identify signal-binding sites of presequence receptors through photo-affinity labeling. Using engineered presequence probes, photo cross-linking sites on mitochondrial proteins were mapped mass spectrometrically, thereby defining a presequence-binding domain of Tim50, a core subunit of the TIM23 complex that is essential for mitochondrial protein import. Our results establish Tim50 as the primary presequence receptor at the inner membrane and show that targeting signals and Tim50 regulate the Tim23 channel in an antagonistic manner."],["dc.identifier.doi","10.1083/jcb.201105098"],["dc.identifier.gro","3142630"],["dc.identifier.isi","000297206400012"],["dc.identifier.pmid","22065641"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/8033"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/55"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.publisher","Rockefeller Univ Press"],["dc.relation.issn","0021-9525"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Tim50's presequence receptor domain is essential for signal driven transport across the TIM23 complex"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2014Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1624"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","1727"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Naumenko, Nataliia"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","von der Malsburg, Karina"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:41Z"],["dc.date.available","2017-09-07T11:45:41Z"],["dc.date.issued","2014"],["dc.description.abstract","Mitochondrial F1Fo-ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear- and mitochondria-encoded subunits. Whereas chaperones for formation of the matrix-exposed hexameric F-1-ATPase core domain have been identified, insight into how the nuclear-encoded F-1-domain assembles with the membrane-embedded F-o-region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F-1-module and peripheral stalk, but not with the assembled F1Fo-ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F-1-module to the membrane embedded F-o-domain. We conclude that INAC represents a matrix-exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo-ATP synthase."],["dc.identifier.doi","10.15252/embj.201488076"],["dc.identifier.gro","3142082"],["dc.identifier.isi","000339917000005"],["dc.identifier.pmid","24942160"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4345"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.title","The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2015Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","1850"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Molecular Cell Research"],["dc.bibliographiccitation.lastpage","1859"],["dc.bibliographiccitation.volume","1853"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Liepold, Thomas"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Schulz, Christian"],["dc.date.accessioned","2017-09-07T11:43:40Z"],["dc.date.available","2017-09-07T11:43:40Z"],["dc.date.issued","2015"],["dc.description.abstract","The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting signals of various precursor proteins that are transported along different import pathways. Aside from the well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket (M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the presequence-containing precursor Mdl1 but not the ADP/ATP carrier (MC). Hence Tom70 contributes to the presequence import pathway by recognition of the targeting signal of the Mdl1 precursor. (C) 2015 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bbamcr.2015.04.021"],["dc.identifier.gro","3141858"],["dc.identifier.isi","000356209600009"],["dc.identifier.pmid","25958336"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1856"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","0006-3002"],["dc.relation.issn","0167-4889"],["dc.title","A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2013Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","886"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","898"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Hutu, Dana P."],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:47:45Z"],["dc.date.available","2017-09-07T11:47:45Z"],["dc.date.issued","2013"],["dc.description.abstract","The mitochondrial presequence translocase interacts with presequence-containing precursors at the intermembrane space (IMS) side of the inner membrane to mediate their translocation into the matrix. Little is known as too how these matrix-targeting signals activate the translocase in order to initiate precursor transport. Therefore, we analysed how signal recognition by the presequence translocase initiates reorganization among Tim-proteins during import. Our analyses revealed that the presequence receptor Tim50 interacts with Tim21 in a signal-sensitive manner in a process that involves the IMS-domain of the Tim23 channel. The signal-driven release of Tim21 from Tim50 promotes recruitment of Pam17 and thus triggers formation of the motor-associated form of the TIM23 complex required for matrix transport. The EMBO Journal (2013) 32, 886-898. doi:10.1038/emboj.2013.23; Published online 12 February 2013"],["dc.identifier.doi","10.1038/emboj.2013.23"],["dc.identifier.gro","3142372"],["dc.identifier.isi","000316463600013"],["dc.identifier.pmid","23403928"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7552"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0261-4189"],["dc.title","Signal recognition initiates reorganization of the presequence translocase during protein import"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2017Journal Article Research Paper
    [["dc.bibliographiccitation.firstpage","83"],["dc.bibliographiccitation.issue","1"],["dc.bibliographiccitation.journal","The Journal of Cell Biology"],["dc.bibliographiccitation.lastpage","92"],["dc.bibliographiccitation.volume","216"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Clancy, Anne"],["dc.contributor.author","Guiard, Bernard"],["dc.contributor.author","Ieva, Raffaele"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:53:21Z"],["dc.date.available","2017-09-07T11:53:21Z"],["dc.date.issued","2017"],["dc.description.abstract","wo driving forces energize precursor translocation across the inner mitochondrial membrane. Although the membrane potential (Δψ) is considered to drive translocation of positively charged presequences through the TIM23 complex (presequence translocase), the activity of the Hsp70-powered import motor is crucial for the translocation of the mature protein portion into the matrix. In this study, we show that mitochondrial matrix proteins display surprisingly different dependencies on the Δψ. However, a precursor's hypersensitivity to a reduction of the Δψ is not linked to the respective presequence, but rather to the mature portion of the polypeptide chain. The presequence translocase constituent Pam17 is specifically recruited by the receptor Tim50 to promote the transport of hypersensitive precursors into the matrix. Our analyses show that two distinct Δψ-driven translocation steps energize precursor passage across the inner mitochondrial membrane. The Δψ- and Pam17-dependent import step identified in this study is positioned between the two known energy-dependent steps: Δψ-driven presequence translocation and adenosine triphosphate-driven import motor activity."],["dc.identifier.doi","10.1083/jcb.201607066"],["dc.identifier.gro","3145078"],["dc.identifier.pmid","28011846"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/2774"],["dc.identifier.url","https://sfb1190.med.uni-goettingen.de/production/literature/publications/7"],["dc.language.iso","en"],["dc.notes.intern","Crossref Import"],["dc.notes.status","final"],["dc.relation","SFB 1190: Transportmaschinen und Kontaktstellen zellulärer Kompartimente"],["dc.relation","SFB 1190 | Z03: Synthetische genetische Analyse, automatisierte Mikroskopie und Bildanalyse"],["dc.relation.issn","0021-9525"],["dc.relation.workinggroup","RG Rehling (Mitochondrial Protein Biogenesis)"],["dc.relation.workinggroup","RG Schwappach (Membrane Protein Biogenesis)"],["dc.rights","CC BY-NC-SA 4.0"],["dc.title","Two distinct membrane potential–dependent steps drive mitochondrial matrix protein translocation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","no"],["dc.type.subtype","original_ja"],["dc.type.version","published_version"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC