Options
Lytovchenko, Oleksandr
Loading...
Preferred name
Lytovchenko, Oleksandr
Official Name
Lytovchenko, Oleksandr
Alternative Name
Lytovchenko, O.
Main Affiliation
Now showing 1 - 6 of 6
2014Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1624"],["dc.bibliographiccitation.issue","15"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","1727"],["dc.bibliographiccitation.volume","33"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Naumenko, Nataliia"],["dc.contributor.author","Oeljeklaus, Silke"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","von der Malsburg, Karina"],["dc.contributor.author","Deckers, Markus"],["dc.contributor.author","Warscheid, Bettina"],["dc.contributor.author","van der Laan, Martin"],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:45:41Z"],["dc.date.available","2017-09-07T11:45:41Z"],["dc.date.issued","2014"],["dc.description.abstract","Mitochondrial F1Fo-ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear- and mitochondria-encoded subunits. Whereas chaperones for formation of the matrix-exposed hexameric F-1-ATPase core domain have been identified, insight into how the nuclear-encoded F-1-domain assembles with the membrane-embedded F-o-region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F-1-module and peripheral stalk, but not with the assembled F1Fo-ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F-1-module to the membrane embedded F-o-domain. We conclude that INAC represents a matrix-exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo-ATP synthase."],["dc.identifier.doi","10.15252/embj.201488076"],["dc.identifier.gro","3142082"],["dc.identifier.isi","000339917000005"],["dc.identifier.pmid","24942160"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/4345"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","1460-2075"],["dc.relation.issn","0261-4189"],["dc.title","The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2012Conference Abstract [["dc.bibliographiccitation.firstpage","660"],["dc.bibliographiccitation.issue","17-18"],["dc.bibliographiccitation.journal","Wiener klinische Wochenschrift"],["dc.bibliographiccitation.lastpage","661"],["dc.bibliographiccitation.volume","124"],["dc.contributor.author","Fromm-Dornieden, Carolin"],["dc.contributor.author","Heyde, Silvia von der"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Salinas-Riester, Gabriela"],["dc.contributor.author","Brenig, Bertram B."],["dc.contributor.author","BeiĂźbarth, Tim"],["dc.contributor.author","Baumgartner, Bernhard G."],["dc.date.accessioned","2018-11-07T09:06:27Z"],["dc.date.available","2018-11-07T09:06:27Z"],["dc.date.issued","2012"],["dc.identifier.isi","000309233400021"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/25562"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","Wien"],["dc.title","Identification of new translationally regulated genes in early Adipogenesis"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details WOS2015Journal Article Research Paper [["dc.bibliographiccitation.firstpage","1850"],["dc.bibliographiccitation.issue","8"],["dc.bibliographiccitation.journal","Biochimica et Biophysica Acta (BBA) - Molecular Cell Research"],["dc.bibliographiccitation.lastpage","1859"],["dc.bibliographiccitation.volume","1853"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Neumann, Piotr"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Gomkale, Ridhima"],["dc.contributor.author","Schendzielorz, Alexander Benjamin"],["dc.contributor.author","Schmidt, Bernhard"],["dc.contributor.author","Liepold, Thomas"],["dc.contributor.author","Ficner, Ralf"],["dc.contributor.author","Jahn, Olaf"],["dc.contributor.author","Rehling, Peter"],["dc.contributor.author","Schulz, Christian"],["dc.date.accessioned","2017-09-07T11:43:40Z"],["dc.date.available","2017-09-07T11:43:40Z"],["dc.date.issued","2015"],["dc.description.abstract","The translocase of the outer mitochondrial membrane (TOM complex) is the general entry gate into mitochondria for almost all imported proteins. A variety of specific receptors allow the TOM complex to recognize targeting signals of various precursor proteins that are transported along different import pathways. Aside from the well-characterized presequence receptors Tom20 and Tom22 a third TOM receptor, Tom70, binds proteins of the carrier family containing multiple transmembrane segments. Here we demonstrate that Tom70 directly binds to presequence peptides using a dedicated groove. A single point mutation in the cavity of this pocket (M551R) reduces the presequence binding affinity of Tom70 ten-fold and selectively impairs import of the presequence-containing precursor Mdl1 but not the ADP/ATP carrier (MC). Hence Tom70 contributes to the presequence import pathway by recognition of the targeting signal of the Mdl1 precursor. (C) 2015 Elsevier B.V. All rights reserved."],["dc.identifier.doi","10.1016/j.bbamcr.2015.04.021"],["dc.identifier.gro","3141858"],["dc.identifier.isi","000356209600009"],["dc.identifier.pmid","25958336"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/1856"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.eissn","0006-3002"],["dc.relation.issn","0167-4889"],["dc.title","A presequence-binding groove in Tom70 supports import of Mdl1 into mitochondria"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2013Journal Article Research Paper [["dc.bibliographiccitation.firstpage","886"],["dc.bibliographiccitation.issue","6"],["dc.bibliographiccitation.journal","EMBO Journal"],["dc.bibliographiccitation.lastpage","898"],["dc.bibliographiccitation.volume","32"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Melin, Jonathan"],["dc.contributor.author","Schulz, Christian"],["dc.contributor.author","Kilisch, Markus"],["dc.contributor.author","Hutu, Dana P."],["dc.contributor.author","Rehling, Peter"],["dc.date.accessioned","2017-09-07T11:47:45Z"],["dc.date.available","2017-09-07T11:47:45Z"],["dc.date.issued","2013"],["dc.description.abstract","The mitochondrial presequence translocase interacts with presequence-containing precursors at the intermembrane space (IMS) side of the inner membrane to mediate their translocation into the matrix. Little is known as too how these matrix-targeting signals activate the translocase in order to initiate precursor transport. Therefore, we analysed how signal recognition by the presequence translocase initiates reorganization among Tim-proteins during import. Our analyses revealed that the presequence receptor Tim50 interacts with Tim21 in a signal-sensitive manner in a process that involves the IMS-domain of the Tim23 channel. The signal-driven release of Tim21 from Tim50 promotes recruitment of Pam17 and thus triggers formation of the motor-associated form of the TIM23 complex required for matrix transport. The EMBO Journal (2013) 32, 886-898. doi:10.1038/emboj.2013.23; Published online 12 February 2013"],["dc.identifier.doi","10.1038/emboj.2013.23"],["dc.identifier.gro","3142372"],["dc.identifier.isi","000316463600013"],["dc.identifier.pmid","23403928"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/7552"],["dc.language.iso","en"],["dc.notes.intern","WoS Import 2017-03-10"],["dc.notes.status","final"],["dc.notes.submitter","PUB_WoS_Import"],["dc.relation.issn","0261-4189"],["dc.title","Signal recognition initiates reorganization of the presequence translocase during protein import"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.subtype","original"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS2011Conference Abstract [["dc.bibliographiccitation.journal","Wiener klinische Wochenschrift"],["dc.bibliographiccitation.volume","123"],["dc.contributor.author","Fromm-Dornieden, Carolin"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Salinas-Riester, Gabriela"],["dc.contributor.author","Heyde, Silvia von der"],["dc.contributor.author","BeiĂźbarth, Tim"],["dc.contributor.author","Brenig, Bertram B."],["dc.contributor.author","Baumgartner, Bernhard G."],["dc.date.accessioned","2018-11-07T08:50:04Z"],["dc.date.available","2018-11-07T08:50:04Z"],["dc.date.issued","2011"],["dc.identifier.isi","000298356200044"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/21605"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Springer"],["dc.publisher.place","Wien"],["dc.title","Management of early Adipogenesis through Translational Control"],["dc.type","conference_abstract"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dspace.entity.type","Publication"]]Details WOS2008Journal Article [["dc.bibliographiccitation.firstpage","2905"],["dc.bibliographiccitation.issue","7"],["dc.bibliographiccitation.journal","Infection and Immunity"],["dc.bibliographiccitation.lastpage","2912"],["dc.bibliographiccitation.volume","76"],["dc.contributor.author","Hippe, Diana"],["dc.contributor.author","Lytovchenko, Oleksandr"],["dc.contributor.author","Schmitz, Ingo"],["dc.contributor.author","Lueder, Carsten Guenter Kurt"],["dc.date.accessioned","2018-11-07T11:13:30Z"],["dc.date.available","2018-11-07T11:13:30Z"],["dc.date.issued","2008"],["dc.description.abstract","The intracellular protozoan Toxoplasma gondii induces persistent infections in various hosts and is an important opportunistic pathogen of humans with immature or deficient immune responses. The ability to survive intracellularly largely depends on the blocking of different proapoptotic signaling cascades of its host cell. Fas/CD95 triggers an apoptotic cascade that is crucial for immunity and the outcome of infectious diseases. We have determined the mechanism by which T. gondii counteracts death receptor-mediated cell death in type II cells that transduce Fas/CD95 ligation via caspase 8-mediated activation of the mitochondrial amplification loop. The results showed that infection with T. gondii significantly reduced Fas/CD95-triggered apoptosis in HeLa cells by inhibiting the activities of initiator caspases 8 and 9 and effector caspase 3/7. Parasitic infection dose dependently diminished cleavage of caspase 8, the BH3-only protein Bid, and the downstream caspases 9 and 3. Importantly, interference with Fas/CD95-triggered caspase 8 and caspase 3/7 activities after parasitic infection was largely dependent on the presence of caspase 9. Within the mitochondrial amplification loop, T. gondii significantly inhibited the Fas/CD95-triggered release of cytochrome c into the host cell cytosol. These results indicate that T. gondii inhibits Fas/CD95-mediated apoptosis in type II cells primarily by decreasing the apoptogenic function of mitochondria."],["dc.identifier.doi","10.1128/IAI.01546-07"],["dc.identifier.isi","000257172300011"],["dc.identifier.pmid","18411295"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/53912"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Microbiology"],["dc.relation.issn","0019-9567"],["dc.title","Fas/CD95-mediated apoptosis of type II cells is blocked by Toxoplasma gondii primarily via interference with the mitochondrial amplification loop"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS