Options
Ahlen, Melanie von
Loading...
Preferred name
Ahlen, Melanie von
Official Name
Ahlen, Melanie von
Alternative Name
von Ahlen, Melanie
Ahlen, Melanie v.
Ahlen, M. v.
Ahlen, M. von
Main Affiliation
Now showing 1 - 1 of 1
2010Journal Article [["dc.bibliographiccitation.firstpage","33756"],["dc.bibliographiccitation.issue","44"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","33763"],["dc.bibliographiccitation.volume","285"],["dc.contributor.author","Vogel, Sabine"],["dc.contributor.author","Wottawa, Marieke"],["dc.contributor.author","Farhat, Katja"],["dc.contributor.author","Zieseniss, Anke"],["dc.contributor.author","Schnelle, Moritz"],["dc.contributor.author","Le-Huu, Sinja"],["dc.contributor.author","von Ahlen, Melanie"],["dc.contributor.author","Malz, Cordula R."],["dc.contributor.author","Camenisch, Gieri"],["dc.contributor.author","Katschinski, Doerthe Magdalena"],["dc.date.accessioned","2018-11-07T08:37:53Z"],["dc.date.available","2018-11-07T08:37:53Z"],["dc.date.issued","2010"],["dc.description.abstract","Cells are responding to hypoxia via prolyl-4-hydroxylase domain (PHD) enzymes, which are responsible for oxygen-dependent hydroxylation of the hypoxia-inducible factor (HIF)-1 alpha subunit. To gain further insight into PHD function, we generated knockdown cell models for the PHD2 isoform, which is the main isoform regulating HIF-1 alpha hydroxylation and thus stability in normoxia. Induction of a PHD2 knockdown in tetracycline-inducible HeLa PHD2 knockdown cells resulted in increased F-actin formation as detected by phalloidin staining. A similar effect could be observed in the stably transfected PHD2 knockdown cell clones 1B6 and 3B7. F-actin is at least in part responsible for shaping cell morphology as well as regulating cell migration. Cell migration was impaired significantly as a consequence of PHD2 knockdown in a scratch assay. Mechanistically, PHD2 knockdown resulted in activation of the RhoA (Ras homolog gene family member A)/Rho-associated kinase pathway with subsequent phosphorylation of cofilin. Because cofilin phosphorylation impairs its actin-severing function, this may explain the F-actin phenotype, thereby providing a functional link between PHD2-dependent signaling and cell motility."],["dc.identifier.doi","10.1074/jbc.M110.132985"],["dc.identifier.isi","000283354000021"],["dc.identifier.pmid","20801873"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6193"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/18648"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Biochemistry Molecular Biology Inc"],["dc.relation.issn","0021-9258"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Prolyl Hydroxylase Domain (PHD) 2 Affects Cell Migration and F-actin Formation via RhoA/Rho-associated Kinase-dependent Cofilin Phosphorylation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]Details DOI PMID PMC WOS