Now showing 1 - 1 of 1
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","33756"],["dc.bibliographiccitation.issue","44"],["dc.bibliographiccitation.journal","Journal of Biological Chemistry"],["dc.bibliographiccitation.lastpage","33763"],["dc.bibliographiccitation.volume","285"],["dc.contributor.author","Vogel, Sabine"],["dc.contributor.author","Wottawa, Marieke"],["dc.contributor.author","Farhat, Katja"],["dc.contributor.author","Zieseniss, Anke"],["dc.contributor.author","Schnelle, Moritz"],["dc.contributor.author","Le-Huu, Sinja"],["dc.contributor.author","von Ahlen, Melanie"],["dc.contributor.author","Malz, Cordula R."],["dc.contributor.author","Camenisch, Gieri"],["dc.contributor.author","Katschinski, Doerthe Magdalena"],["dc.date.accessioned","2018-11-07T08:37:53Z"],["dc.date.available","2018-11-07T08:37:53Z"],["dc.date.issued","2010"],["dc.description.abstract","Cells are responding to hypoxia via prolyl-4-hydroxylase domain (PHD) enzymes, which are responsible for oxygen-dependent hydroxylation of the hypoxia-inducible factor (HIF)-1 alpha subunit. To gain further insight into PHD function, we generated knockdown cell models for the PHD2 isoform, which is the main isoform regulating HIF-1 alpha hydroxylation and thus stability in normoxia. Induction of a PHD2 knockdown in tetracycline-inducible HeLa PHD2 knockdown cells resulted in increased F-actin formation as detected by phalloidin staining. A similar effect could be observed in the stably transfected PHD2 knockdown cell clones 1B6 and 3B7. F-actin is at least in part responsible for shaping cell morphology as well as regulating cell migration. Cell migration was impaired significantly as a consequence of PHD2 knockdown in a scratch assay. Mechanistically, PHD2 knockdown resulted in activation of the RhoA (Ras homolog gene family member A)/Rho-associated kinase pathway with subsequent phosphorylation of cofilin. Because cofilin phosphorylation impairs its actin-severing function, this may explain the F-actin phenotype, thereby providing a functional link between PHD2-dependent signaling and cell motility."],["dc.identifier.doi","10.1074/jbc.M110.132985"],["dc.identifier.isi","000283354000021"],["dc.identifier.pmid","20801873"],["dc.identifier.purl","https://resolver.sub.uni-goettingen.de/purl?gs-1/6193"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/18648"],["dc.notes.intern","Merged from goescholar"],["dc.notes.status","zu prĂĽfen"],["dc.notes.submitter","Najko"],["dc.publisher","Amer Soc Biochemistry Molecular Biology Inc"],["dc.relation.issn","0021-9258"],["dc.rights","Goescholar"],["dc.rights.uri","https://goescholar.uni-goettingen.de/licenses"],["dc.title","Prolyl Hydroxylase Domain (PHD) 2 Affects Cell Migration and F-actin Formation via RhoA/Rho-associated Kinase-dependent Cofilin Phosphorylation"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS