Now showing 1 - 4 of 4
  • 2016Journal Article
    [["dc.bibliographiccitation.firstpage","357"],["dc.bibliographiccitation.issue","3"],["dc.bibliographiccitation.journal","Acta Crystallographica Section A Foundations and Advances"],["dc.bibliographiccitation.lastpage","365"],["dc.bibliographiccitation.volume","72"],["dc.contributor.author","Sowa, Heidrun"],["dc.contributor.author","Fischer, Werner"],["dc.date.accessioned","2020-12-10T18:26:01Z"],["dc.date.available","2020-12-10T18:26:01Z"],["dc.date.issued","2016"],["dc.description.abstract","All homogeneous sphere packings were derived that refer to the two invariant, the four univariant and the three bivariant lattice complexes belonging to the monoclinic crystal system. In total, sphere packings of 29 types have been found. Only for five types is the maximal inherent symmetry of their sphere packings monoclinic whereas the inherent symmetry is orthorhombic for nine types, tetragonal for five types, hexagonal for six types and cubic for four types."],["dc.identifier.doi","10.1107/S205327331502450X"],["dc.identifier.eissn","2053-2733"],["dc.identifier.isi","000375147400010"],["dc.identifier.pmid","27126112"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/75914"],["dc.notes.intern","DOI Import GROB-354"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Int Union Crystallography"],["dc.relation.issn","2053-2733"],["dc.title","Monoclinic sphere packings. I. Invariant, univariant and bivariant lattice complexes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2006Journal Article
    [["dc.bibliographiccitation.firstpage","413"],["dc.bibliographiccitation.journal","ACTA CRYSTALLOGRAPHICA SECTION A"],["dc.bibliographiccitation.lastpage","418"],["dc.bibliographiccitation.volume","62"],["dc.contributor.author","Fischer, Werner"],["dc.contributor.author","Sowa, Heidrun"],["dc.contributor.author","Koch, Elke"],["dc.date.accessioned","2018-11-07T08:59:04Z"],["dc.date.available","2018-11-07T08:59:04Z"],["dc.date.issued","2006"],["dc.description.abstract","All homogeneous sphere packings and all interpenetrating sphere packings were derived that refer to the 6 invariant and the 11 univariant lattice complexes belonging to the orthorhombic crystal system. In total, sphere packings of 38 types have been found. Only for 17 types is the maximal inherent symmetry of their sphere packings orthorhombic. By means of a number of examples, the applicability of sphere packings for the comparison and description of simple crystal structures is demonstrated."],["dc.identifier.doi","10.1107/S0108767306028704"],["dc.identifier.isi","000241433300001"],["dc.identifier.pmid","17057350"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/23801"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","0108-7673"],["dc.title","Orthorhombic sphere packings. I. Invariant and univariant lattice complexes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2007Journal Article
    [["dc.bibliographiccitation.firstpage","354"],["dc.bibliographiccitation.journal","ACTA CRYSTALLOGRAPHICA SECTION A"],["dc.bibliographiccitation.lastpage","364"],["dc.bibliographiccitation.volume","63"],["dc.contributor.author","Sowa, Heidrun"],["dc.contributor.author","Koch, Elke"],["dc.contributor.author","Fischer, Werner"],["dc.date.accessioned","2018-11-07T11:00:44Z"],["dc.date.available","2018-11-07T11:00:44Z"],["dc.date.issued","2007"],["dc.description.abstract","All homogeneous sphere packings and all interpenetrating layers of spheres were derived that refer to the 22 orthorhombic bivariant lattice complexes. In total, sphere packings of 90 different types have been found. Only for 47 of these types is the maximal inherent symmetry of their sphere packings orthorhombic. Some examples demonstrate the usefulness of sphere packings for the comparison and description of crystal structures."],["dc.identifier.doi","10.1107/S0108767307023896"],["dc.identifier.isi","000248045400008"],["dc.identifier.pmid","17570898"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/50992"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Blackwell Publishing"],["dc.relation.issn","0108-7673"],["dc.title","Orthorhombic sphere packings. II. Bivariant lattice complexes"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS
  • 2010Journal Article
    [["dc.bibliographiccitation.firstpage","292"],["dc.bibliographiccitation.journal","ACTA CRYSTALLOGRAPHICA SECTION A"],["dc.bibliographiccitation.lastpage","300"],["dc.bibliographiccitation.volume","66"],["dc.contributor.author","Sowa, Heidrun"],["dc.contributor.author","Fischer, Werner"],["dc.date.accessioned","2018-11-07T08:43:17Z"],["dc.date.available","2018-11-07T08:43:17Z"],["dc.date.issued","2010"],["dc.description.abstract","All homogeneous sphere packings and all interpenetrating layers of spheres were derived that refer to the 18 orthorhombic trivariant lattice complexes with mirror symmetry. In total, sphere packings of 51 different types have been found. Only for 28 of these types is the maximal inherent symmetry of their sphere packings orthorhombic. Some crystal structures that can be described by means of sphere packings are listed."],["dc.identifier.doi","10.1107/S0108767309052787"],["dc.identifier.isi","000276808200003"],["dc.identifier.pmid","20404437"],["dc.identifier.uri","https://resolver.sub.uni-goettingen.de/purl?gro-2/19927"],["dc.notes.status","zu prüfen"],["dc.notes.submitter","Najko"],["dc.publisher","Wiley-blackwell"],["dc.relation.issn","0108-7673"],["dc.title","Orthorhombic sphere packings. III. Trivariant lattice complexes with mirror symmetry"],["dc.type","journal_article"],["dc.type.internalPublication","yes"],["dc.type.peerReviewed","yes"],["dc.type.status","published"],["dspace.entity.type","Publication"]]
    Details DOI PMID PMC WOS